Answer:
292796435 seconds ≈ 300 million seconds
Explanation:
First of all, the speed of the car is 121km/h = 33.6111 m/s
The radius of the planet is given to be 7380 km = 7380000 m
From the relationship between linear velocity and angular velocity i.e., v=rw, the angular velocity of the car will be w=v/r = 33.6111/7380000 = 0.000000455 rad/s = 4.55 x 10⁻⁶ rad/sec
If the angular velocity of the vehicle about the planet's center is 9.78 times as large as the angular velocity of the planet then we have
w(vehicle) = 9.78 x w(planet)
w(planet) = w(vehicle)/9.78 = 4.55 x 10⁻⁶ / 9.78 = 4.66 x 10⁻⁷ rad/sec
To find the period of the planet's rotation; we use the equation
w(planet) = 2π÷T
Where w(planet) is the angular velocity of the planet and T is the period
From the equation T = 2π÷w = 2×(22/7) ÷ 4.66 x 10⁻⁷ = 292796435 seconds
Therefore the period of the planet's motion is 292796435 seconds which is approximately 300, 000, 000 (300 million) seconds
Power in physics is work done over time. So the answer is Power is the rate at which work is done.
The second diver have to leap to make a competitive splash by 4.08 m high.
<h3>What is potential energy?</h3>
The energy by virtue of its position is called the potential energy.
PE = mgh
where, g = 9.81 m/s²
Given is the diver jumps from a 3.00-m platform. one diver has a mass of 136 kg and simply steps off the platform. another diver has a mass of 100 kg and leaps upward from the platform.
The potential energy of the first diver must be equal to the second diver.
P.E₁ = P.E₂
m₁gh₁ = m₂gh₂
Substitute the vales, we have
136 x 3 = 100 x h₂
h₂ = ₂4.08 m
Thus, the second diver need to leap by 4.08 m high.
Learn more about potential energy.
brainly.com/question/24284560
#SPJ1
Yes, all of these could be applied to a roller coaster.
Coal, petroleum, and natural gas are considered nonrenewable because they can not be replenished in a short period of time