Answer:
the answer is b temperature
Look up pulleys problem through Khan academy and a video should pop up with a problem similar and you should be able to walk through it .
At First, there is chemical Energy( in your muscels) which is Used to Push down the spring. This Energy becomes the Energy of the spring, which increases until you stop pushing. If you Put your hand away, the Energy of the spring will become kinetic energ. This Energy is at the highest Level the Moment the book ist Leaving the spring. Afterwards, the kinetic Energy decreases while the Gravitational Potential Energy increases.
Answer:
Average density of Sun is 1.3927
.
Given:
Radius of Sun = 7.001 ×
km = 7.001 ×
cm
Mass of Sun = 2 ×
kg = 2 ×
g
To find:
Average density of Sun = ?
Formula used:
Density of Sun = 
Solution:
Density of Sun is given by,
Density of Sun = 
Volume of Sun = 
Volume of Sun = ![\frac{4}{3} \times 3.14 \times [7.001 \times 10^{10}]^{3}](https://tex.z-dn.net/?f=%5Cfrac%7B4%7D%7B3%7D%20%5Ctimes%203.14%20%5Ctimes%20%5B7.001%20%5Ctimes%2010%5E%7B10%7D%5D%5E%7B3%7D)
Volume of Sun = 1.436 ×

Density of Sun = 
Density of Sun = 1.3927 
Thus, Average density of Sun is 1.3927
.
Answer:
D) 15s
Explanation:
let Te be the period of the block-spring system on earth and Tm be the period of the same system on the moon.let g1 be the gravitational acceleration on earth and g2 be the gravitational acceleration on the moon.
the period of a pendulum is given by:
T = 2π√(L/g)
so on earth:
Te = 2π√(L/g1)
= 6s
on the moon;
Tm = 2π√(L/g2)
since g2 = 1/6 g1 then:
Tm = 2π√(L/(1/6×g1))
= √(6)×2π√(L/(g1))
and 2π√(L/(g1)) = Te = 6s
Tm = (√(6))×6 = 14.7s ≈ 15s
Therefore, the period of the block-spring system on the moon is 15s.