Heat<span> capacity ( C ) </span>does change with mass<span>. However, </span>specific heat<span> is the </span>heat<span>capacity per unit </span>mass<span> ( c=Cm ). Therefore if you double the amount of </span>mass<span> in your system, you've doubled its </span>heat<span> capacity, but you've kept the </span>specific heat<span> the same. ... </span>Specific<span> gravity is another such quantity.</span>
First, illustrate the problem as shown in the attached picture. Next, let's find the distance traveled by planes A and B after 2.9 h.
Distance of A: 650 m/h * 2.9 h = 1,885 m
Distance of B: 560 m/h * 2.9 h = 1,624 m
Then, we use the cosine law to determine the distance x. The angle should be: 85 - 60.5 = 24.5°
x² = 1,885² + 1,624² - 2(1,885)(1,624)(cos 24.5°)
x = √619381.3183
<em>x = 787 m</em>
Answer:
Explanation:
Velocity by definition means speed and direction of an object. This means it has a value and a positive or minus sign indicating direction. Speed is the absolute value of velocity because there is no direction correlated with speed. If you add a direction, it is then called velocity
Answer:
F = Force (Measured in Newtons, N), m = Mass (Measured in kilograms, kg), and a = acceleration (Measured in metres per second squared, 
Explanation:
This is Newton's Second Law!
Hope this helps!
PLS mark as brainliest, hope this helps!
Given parameters:
Mass of the car = 1000kg
Unknown:
Height = ?
To find the heights for the different amount potential energy given, we need to understand what potential energy is.
Potential energy is the energy at rest due to the position of a body.
It is mathematically expressed as:
P.E = mgh
m is the mass
g is the acceleration due to gravity = 9.8m/s²
h is the height of the car
Now the unknown is h, height and we make it the subject of the expression to make for easy calculation.
h = 
<u>For 2.0 x 10³ J;</u>
h =
= 0.204m
<u>For 2.0 x 10⁵ J;</u>
h =
= 20.4m
<u>For 1.0kJ = 1 x 10³J; </u>
h =
= 0.102m