Hubble noticed that the galaxies were moving away from us, which meant the universe was expanding.
This is why constellations change over time. In some years, the Big Dipper won't actually look like a dipper anymore.
-- Momentum is (mass) x (speed).
Object B has 1.5 times as much momentum as Object A has.
-- Kinetic energy is (1/2) x (mass) x (speed) .
Object B has 1.5 times as much kinetic energy as Object A has.
-- If they would both stop long enough to get on the scale,
Object B would weigh 1.5 times as much as Object A does.
Answer:
68cm
Explanation:
You can solve this problem by using the momentum conservation and energy conservation. By using the conservation of the momentum you get

m: mass of the bullet
M: mass of the pendulum
v1: velocity of the bullet = 410m/s
v2: velocity of the pendulum =0m/s
v: velocity of both bullet ad pendulum joint
By replacing you can find v:

this value of v is used as the velocity of the total kinetic energy of the block of pendulum and bullet. This energy equals the potential energy for the maximum height reached by the block:

g: 9.8/s^2
h: height
By doing h the subject of the equation and replacing you obtain:

hence, the heigth is 68cm
Answer:
155.38424 K
2.2721 kg/m³
Explanation:
= Pressure at reservoir = 10 atm
= Temperature at reservoir = 300 K
= Pressure at exit = 1 atm
= Temperature at exit
= Mass-specific gas constant = 287 J/kgK
= Specific heat ratio = 1.4 for air
For isentropic flow

The temperature of the flow at the exit is 155.38424 K
From the ideal equation density is given by

The density of the flow at the exit is 2.2721 kg/m³
Answer:

Explanation:
<u>Tangent and Angular Velocities</u>
In the uniform circular motion, an object describes the same angles in the same times. If
is the angle formed by the trajectory of the object in a time t, then its angular velocity is

if
is expressed in radians and t in seconds the units of w is rad/s. If the circular motion is uniform, the object forms an angle
in 2t, or
in 3t, etc. Thus the angular velocity is constant.
The magnitude of the tangent or linear velocity is computed as the ratio between the arc length and the time taken to travel that distance:

Replacing the formula for w, we have
