1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
STALIN [3.7K]
3 years ago
14

This demonstrates which of the following?

Physics
2 answers:
LekaFEV [45]3 years ago
5 0

Answer:

A. is the answer

Papessa [141]3 years ago
3 0
I think the answer is 8!
You might be interested in
Which of the following expressions will have units of kg⋅m/s2? Select all that apply, where x is position, v is velocity, m is m
netineya [11]

Answer: m \frac{d}{dt}v_{(t)}

Explanation:

In the image  attached with this answer are shown the given options from which only one is correct.

The correct expression is:

m \frac{d}{dt}v_{(t)}

Because, if we derive velocity v_{t} with respect to time t we will have acceleration a, hence:

m \frac{d}{dt}v_{(t)}=m.a

Where m is the mass with units of kilograms (kg) and a with units of meter per square seconds \frac{m}{s}^{2}, having as a result kg\frac{m}{s}^{2}

The other expressions are incorrect, let’s prove it:

\frac{m}{2} \frac{d}{dx}{(v_{(x)})}^{2}=\frac{m}{2} 2v_{(x)}^{2-1}=mv_{(x)} This result has units of kg\frac{m}{s}

m\frac{d}{dt}a_{(t)}=ma_{(t)}^{1-1}=m This result has units of kg

m\int x_{(t)} dt= m \frac{{(x_{(t)})}^{1+1}}{1+1}+C=m\frac{{(x_{(t)})}^{2}}{2}+C This result has units of kgm^{2} and C is a constant

m\frac{d}{dt}x_{(t)}=mx_{(t)}^{1-1}=m This result has units of kg

m\frac{d}{dt}v_{(t)}=mv_{(t)}^{1-1}=m This result has units of kg

\frac{m}{2}\int {(v_{(t)})}^{2} dt= \frac{m}{2} \frac{{(v_{(t)})}^{2+1}}{2+1}+C=\frac{m}{6} {(v_{(t)})}^{3}+C This result has units of kg \frac{m^{3}}{s^{3}} and C is a constant

m\int a_{(t)} dt= \frac{m {a_{(t)}}^{2}}{2}+C This result has units of kg \frac{m^{2}}{s^{4}} and C is a constant

\frac{m}{2} \frac{d}{dt}{(v_{(x)})}^{2}=0 because v_{(x)} is a constant in this derivation respect to t

m\int v_{(t)} dt= \frac{m {v_{(t)}}^{2}}{2}+C This result has units of kg \frac{m^{2}}{s^{2}} and C is a constant

6 0
3 years ago
The gravitational acceleration is 9.81 m/s2 here on Earth at sea level. What is the gravitational acceleration at a height of 35
azamat

To solve this problem it is necessary to apply the definition of severity of Newtonian laws in which it is specified that gravity is defined by

g= \frac{GM}{R^2}

Where

G= Gravitational Constant

M = Mass of Earth

R= Radius from center of the planet

According to the information we need to find the gravity 350km more than the radius of Earth, then

g_{ss} = \frac{GM}{R+h^2}

g_{ss} = \frac{6.67*10^{-11}*5.972*10^{24}}{(6371*10^3+350*10^3)^2}

g_{ss} = 8.82m/s^2

Therefore the gravitational acceleration at 350km is 8.82m/s^2

5 0
3 years ago
When an average force F is exerted over a certain distance on a shopping cart of mass m, its kinetic energy increases by 1/2 mv2
agasfer [191]
W work
F force 
s distance

If F = constant:

W₁ = F·s

If you triple the force and the distance:

W₂ = 3F · 3s = 9 F·s = 9 W₁

6 0
3 years ago
Read 2 more answers
What is the function or the skeletal system hdbdb
yKpoI14uk [10]

Explanation:

Hope its helps u

if wrong then sry

5 0
3 years ago
The electric output of a power plant is 716 MW. Cooling water is the main way heat from the powerplant is rejected, and it flows
Stels [109]

Answer:

(a) 83475 MW

(b) 85.8 %

Explanation:

Output power = 716 MW = 716 x 10^6 W

Amount of water flows, V = 1.35 x 10^8 L = 1.35 x 10^8 x 10^-3 m^3

mass of water, m = Volume  x density = 1.35 x 10^8 x 10^-3 x 1000

                                                               = 1.35 x 10^8 kg

Time, t = 1 hr = 3600 second

T1 = 25.4° C, T2 = 30.7° C

Specific heat of water, c = 4200 J/kg°C

(a) Total energy, Q = m x c x ΔT

Q = 1.35 x 10^8 x 4200 x (30.7 - 25.4) = 3 x 10^12 J

Power = Energy / time

Power input = P = \frac{3 \times 10^{12}}{3600}=8.35 \times 10^{8}W

Power input = 83475 MW

(b) The efficiency of the plant is defined as the ratio of output power to the input power.

\eta =\frac{Power output}{Power input}

\eta =\frac{716}{83475}=0.858

Thus, the efficiency is 85.8 %.

7 0
3 years ago
Other questions:
  • It takes a slug 20 minutes to travel from the grass to the trash can , a trip of 15 meters. How far could the slug travel in 60
    11·1 answer
  • Find the length (in m) of an organ pipe closed at one end that produces a fundamental frequency of 494 Hz when air temperature i
    8·1 answer
  • When titanium bonds with oxygen, the ionic compound that forms has the chemical formula Ti2O3 and consists of Ti3+ ions and O2-
    7·1 answer
  • A ball is dropped from rest at point O. After falling for some time, it passes by a window of height 3.3 m and it does so in 0.2
    11·1 answer
  • According to the chart, one gram of copper and
    10·1 answer
  • An energy source forces a constant current of 2A to flow through a light bulbfilament for twenty seconds. If 4.6 kJ is given off
    8·1 answer
  • Name one metal and one non-metal from the periodic table? <br><br> Y’all I need help<br> Thank you!
    12·1 answer
  • What direction do all planets rotate BUT Venus?
    9·2 answers
  • A collision is elastic only when kinetic energy and momentum are conserved through the collision. Group of answer choices True F
    13·1 answer
  • When you’re driving on the freeway it’s necessary to keep your foot on the accelerator to keep the car moving at a constant spee
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!