Answer:
•→ The motion of a particle or body in S.H.M acts towards a fixed point.
•→ Acceleration of the body under S.H.M is proportional to its displacement.
•→ This motion is periodic.
•→ Mechanical energy is conserved in S.H.M
Explanation:
S.H.M is Simple Harmonic Motion

According to Newton's second law, the force applied to an object is equal to the product between the mass of the object and its acceleration:

where F is the magnitude of the force, m is the mass of the object and a its acceleration.
In this problem, the object is the insect, with mass

. The acceleration of the insect is

, therefore we can calculate the force exerted by the car on the insect:

How do we find the force exerted by the insect on the car?
According to Newton's third law (known as action-reaction law), when an object A exerts a force on an object B, object B also exerts a force equal and opposite on object A. Therefore, the force exerted by the insect on the car is equal to the force exerted by the car on the object, so it is 0.01 N.
The frequencies of light that an atom can emit are dependent on states the electrons can be in. When excited, an electron moves to a higher energy level or orbital. When the electron falls back to its ground level the light is emitted.
hope this helped:)
mark brainliest
Answer:
?do you have a picture of the options orr ?
Explanation: