Answer: Ok, first lest see out problem.
It says it's a Long cylindrical charge distribution, So you can ignore the border effects on the ends of the cylinder.
Also by the gauss law we know that E¨*2*pi*r*L = Q/ε0
where Q is the total charge inside our gaussian surface, that will be a cylinder of radius r and heaight L.
So Q= rho*volume= pi*r*r*L*rho
so replacing : E = (1/2)*r*rho/ε0
you may ask, ¿why dont use R on the solution?
since you are calculating the field inside the cylinder, and the charge density is uniform inside of it, you don't see the charge that is outside, and in your calculation actuali doesn't matter how much charge is outside your gaussian surface, so R does not have an effect on the calculation.
R would matter if in the problem they give you the total charge of the cylinder, so when you only have the charge of a smaller r radius cylinder, you will have a relation between r and R that describes how much charge density you are enclosing.
A waves frequency (in Hertz) is how many crests pass by a point per second. easily confused with period, which is the amount of time it takes for a full wave to pass by a certain point
Answer:
(for small oscillations)
Explanation:
The total energy of the pendulum is equal to:

For small oscillations, the equation can be re-arranged into the following form:

Where:
, measured in radians.
If the amplitude of pendulum oscillations is increase by a factor of 4, the angle of oscillation is
and the total energy of the pendulum is:

The factor of change is:


V=IR
60-V
The current that passes through a 10-ohm resistor = I
I=60/10
6 amperes
Answer with Explanation:
We are given that
Resistance of solenoid,R=4.3 ohm
Magnetic field,B=
Current,I=4.6 A
Diameter of wire,d=0.5 mm=
Radius of wire,r=

Radius of solenoid,r'=1 cm=

Resistivity of copper,
We know that

Where 
Using the formula


Number of turns of wire=
Number of turns of wire=
Hence, the number of turns of the solenoid,N=799
Magnetic field in solenoid,B=






Length of solenoid=12.5 cm
1m=100 cm