Unbalanced forces is what they are called
A motor spins upward the flywheel with a persistent torque
of 50N⋅m.
What time does it take the flywheel to get to the top speed?
From the equation:
Tj = J*dω/dt
you can get the two equations:
Δt1= J1*Δω/Tj = 240*125.66/50 = 603.17 sec
Δt2= J2*Δω/Tj = 120*125.66/50 = 301.58 sec
Answer:E. an object will remain in uniform motion unless acted upon by a force
Explanation:
Answer:
v = 5.7554 m/s
Explanation:
First of all we need to know if the angle of the vine is measured in the horizontal or vertical.
To do this easier, let's assume the angle is measured with the horizontal. In this case, the innitial height of the monkey will be:
h₀ = h sinα
h₀ = 5.32 sin43° = 3.6282 m
As the monkey is dropping from the innitial point which is the suspension point, is also dropping from 5.32. Then the actual height of the monkey will be:
Δh = 5.32 - 3.63 = 1.69 m
In order to calculate the speed of the monkey we need to understand that the monkey has a potential energy. This energy, because of the gravity, is converted in kinetic energy, and the value will be the same. Therefore we can say that:
Ep = Ek
From here, we can calculate the speed of the monkey.
Ep = mgΔH
Ek = 1/2 mv²
The potential energy is:
Ep = 16.9 * 9.8 * 1.69 = 279.9
Now with the kinetic energy:
1/2 * (16.9) * v² = 279.9
v² = (279.9) * 2 / 16.9
v² = 33.12
v = √33.12
<h2>
v = 5.7554 m/s</h2>
Hope this helps
Answer:
Energy is inversely proportional to wavelength.
Explanation:
The amount of energy, E, a wave carries is given as:
E = hf
where h = Planck's constant and f = frequency of the wave
Frequency and wavelength are related by the equation:
c = λf
=> f = c/λ
where λ = wavelength
Therefore, energy is:
E = hc/λ
This shows that energy is inversely proportional to wavelength. As wavelength increase, energy decreases and vice versa.