Let h = distance (m) to the water surface.
Initial velocity, u = 0 (because the stone was dropped).
Use the formula
h = ut + (1/2)gt^2
where g = 9.8 m/s^2 (acc. due to graity)
t = time (s)
h = (1/2)*(9.8)*(3^2) = 44.1 m
The heat moves from the hot chocolate to the handle of the spoon by a process called thermal conduction.
It is the transfer of heat energy from one object to another when they are in contact with eachother.
Hope this answers your question.
Answer:
Total energy is constant
Explanation:
The laws of thermodynamics state that thermal energy (heat) is always transferred from a hot body (higher temperature) to a cold body (lower temperature).
This is because in a hot body, the molecules on average have more kinetic energy (they move faster), so by colliding with the molecules of the cold body, they transfer part of their energy to them. So, the temperature of the hot body decreases, while the temperature of the cold body increases.
This process ends when the two bodies reach the same temperature: we talk about thermal equilibrium.
In this problem therefore, this means that the thermal energy is transferred from the hot water to the cold water.
However, the law of conservation of energy states that the total energy of an isolated system is constant: therefore here, if we consider the hot water + cold water as an isolated system (no exchange of energy with the surroundings), this means that their total energy remains constant.
Answer:
x=2d
Explanation:
initial stretch in the spring is d
so using Hook's law
at equilibrium position
k×d=mg
where k= spring constant
m= mass of fish
g= acceleration due to gravity.
d=mg/k ................ (1)
in second case by energy conservation
1/2 kx^2=mgx
x=2mg/k
using equation 1
x=2d