ANSWER:
(a) 1036 N
(b) -1036 N
(c) 2590 N
STEP-BY-STEP EXPLANATION:
Given:
Mc = 1400 kg
Mt = 560 kg
a = 1.85 m/s^2
(a)
Force by car on trailer:
(b)
(c)
Answer:
Average acceleration on first part of the chunk is given as
Average acceleration on second part of the chunk is given as
Explanation:
By momentum conservation along x direction we will have
so we have
also by energy conservation
by solving above equation we will have
Average acceleration on first part of the chunk is given as
Average acceleration on second part of the chunk is given as
Answer:
The answer is D. density.
Answer:
120 m
Explanation:
Given:
wavelength 'λ' = 2.4m
pulse width 'τ'= 100T ('T' is the time of one oscillation)
The below inequality express the range of distances to an object that radar can detect
τc/2 < x < Tc/2 ---->eq(1)
Where, τc/2 is the shortest distance
First we'll calculate Frequency 'f' in order to determine time of one oscillation 'T'
f = c/λ (c= speed of light i.e 3 x m/s)
f= 3 x / 2.4
f=1.25 x hz.
As, T= 1/f
time of one oscillation T= 1/1.25 x
T= 8 x s
It was given that pulse width 'τ'= 100T
τ= 100 x 8 x => 800 x s
From eq(1), we can conclude that the shortest distance to an object that this radar can detect:
= τc/2 => (800 x x 3 x )/2
=120m
Answer:heat brings it up then down
Explanation: