1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Pachacha [2.7K]
2 years ago
7

Sandi believes that people who eat at McDonald's are overweight, so she decides to do a naturalistic observation of people who e

at at McDonald's. What should most concern us about Sandi's observations? (2 points) the observer effect the bystander effect observer bias subject bias
Physics
1 answer:
lubasha [3.4K]2 years ago
6 0

Answer:

observer bias

Explanation:

Based on the information provided within the question the thing that should concern us the most about Sandi's observations is Observer Bias. This term refers to the tendency of a researcher to see what they want as opposed to what is actually happening. This can be said because of Sandi's belief that McDonald clients are all overweight, by having this belief before actually having come to this conclusion with a series of tests, it might lead her to believe this to be true regardless of what she observes during the experiment.

I hope this answered your question. If you have any more questions feel free to ask away at Brainly.

You might be interested in
Which has the greater acceleration, a person going from 0 m/s to 10 m/s in 10 seconds or an ant going from 0 m/s to 0.25 m/s in
monitta

<u>P</u><u>e</u><u>r</u><u>s</u><u>o</u><u>n</u><u>-</u><u>1</u>

  • Initial velocity=u=0m/s
  • Final velocity=v=10m/s
  • Time=10s=t

\\ \sf\longmapsto Acceleration=\dfrac{v-u}{t}

\\ \sf\longmapsto Acceleration=\dfrac{10-0}{10}

\\ \sf\longmapsto Acceleration=\dfrac{10}{10}

\\ \sf\longmapsto Acceleration=1m/s^2

<u>P</u><u>e</u><u>r</u><u>s</u><u>o</u><u>n</u><u>-</u><u>2</u>

  • initial velocity=0m/s=u
  • Final velocity=v=0.25m/s
  • Time=t=2s

\\ \sf\longmapsto Acceleration=\dfrac{0.25-0}{2}

\\ \sf\longmapsto Acceleration=\dfrac{0.25}{2}

\\ \sf\longmapsto Acceleration=0.125m/s^2

Person-1 is accelerating faster.

4 0
3 years ago
A 100-kg running back runs at 5 m/s into a stationary linebacker. It takes 0.5 s for the running back to be completely stopped.
Elza [17]

Answer:

1000 N

Explanation:

First, we need to find the deceleration of the running back, which is given by:

a=\frac{v-u}{t}

where

v = 0 is his final velocity

u = 5 m/s is his initial velocity

t = 0.5 s is the time taken

Substituting, we have

a=\frac{0-5 m/s}{0.5 s}=-10 m/s^2

And now we can calculate the force exerted on the running back, by using Newton's second law:

F=ma=(100 kg)(-10 m/s^2)=-1000 N

so, the magnitude of the force is 1000 N.

6 0
3 years ago
Read 2 more answers
What is the heat extracted from the cold reservoir for the refrigerator?
zaharov [31]
What is the heat extracted from the cold reservoir for the refrigerator shown in(Figure 1) ? Assume that W1 = -123J and W2 = 88J . 

<span>Qc= _________ </span>

<span>Part B 
</span>
K=105J
7 0
3 years ago
A diffraction pattern forms when light passes through a single slit. The wavelength of the light is 691 nm. Determine the angle
expeople1 [14]

Explanation:

Given that,

Wavelength of the light, \lambda=691\ nm=691\times 10^{-9}\ m

(a) Slit width, a=3.8\times 10^{-4}\ m

The angle that locates the first dark fringe is given by :

sin\theta=\dfrac{\lambda}{a}

sin\theta=\dfrac{691\times 10^{-9}}{3.8\times 10^{-4}}

\theta=0.104^{\circ}

(b) Slit width, a=3.8\times 10^{-6}\ m

The angle that locates the first dark fringe is given by :

sin\theta=\dfrac{\lambda}{a}

sin\theta=\dfrac{691\times 10^{-9}}{3.8\times 10^{-6}}

\theta=10.47^{\circ}

Hence, this is the required solution.

7 0
3 years ago
A guitarist finds that the pitch of one of her strings is slightly flat—the frequency is a bit too low. Should she increase or d
Yuri [45]

Answer:

The guitarist should increase the tension of the string.

Explanation:

The frequency of a vibrating string is determined by fn=(n/(2L))√T/μ. So if the tension in the string increased, the rate at which it vibrates (the frequency) will also increase.

Therefore it is advisable that she increase the tension of the string.

I hope it helps, please give brainliest if it does

6 0
3 years ago
Other questions:
  • If we have less power, we most likely have (2 points)
    14·1 answer
  • If you drop a ball off a cliff, it starts out a 0 m/s. After 1 s, it will be traveling at about 10 m/s. If air resistance is rem
    10·2 answers
  • Simone created a chart to summarize the energy transformations that take place when energy from the wind is used to generate ele
    11·2 answers
  • What is the relationship between Potential and Kinetic Energy
    8·1 answer
  • A solar flare is a sudden, rapid, and intense change in the brightness of the sun. Which of these is most
    7·1 answer
  • The inductive reactance of the circuit is exactly twice the resistance: XL=2R. Adjust the phasor that represents the voltage acr
    11·1 answer
  • Electromagnetic waves can behave like particles
    10·1 answer
  • The shaded boxes contain the first half of four statements. The unshaded boxes
    15·1 answer
  • A Jack Rabbit hops 12.8 meters per second. How long would it take for him to hop 353 m? Round to the nearest tenth place. ​
    8·1 answer
  • A number line goes from negative 5 to positive 5. Point D is at negative 4 and point E is at positive 5. A line is drawn from po
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!