Not sure what you mean but I think you are either talking about a lunch box or a thermos
<em>The correct answer is option</em><em> B.</em> The maximum height that can be reached by the stone is determined as 11.5 m.
<h3>
Maximum height attained by the stone </h3>
The maximum height attained by the stone when it is a 2/3 of its total height is calculated as follows;
v² = u² - 2gh
where;
- v is final velocity at maximum height, v = 0
- u is initial velocity
- g is acceleration due to gravity
0 = u² - 2gh
2gh = u²
h = u²/2g
h = (15²)/(2 x 9.8)
h = 11.48 m
h = 11.5 m
Thus, the maximum height that can be reached by the stone is determined as 11.5 m
Learn more about maximum height here: brainly.com/question/12446886
#SPJ1
Answer:
0.911 atm
Explanation:
In this problem, there is no change in volume of the gas, since the container is sealed.
Therefore, we can apply Gay-Lussac's law, which states that:
"For a fixed mass of an ideal gas kept at constant volume, the pressure of the gas is proportional to its absolute temperature"
Mathematically:

where
p is the gas pressure
T is the absolute temperature
For a gas undergoing a transformation, the law can be rewritten as:

where in this problem:
is the initial pressure of the gas
is the initial absolute temperature of the gas
is the final temperature of the gas
Solving for p2, we find the final pressure of the gas:

D.all of the above is the answer for this question