Answer:
The average speed for the whole journey is 49.5 miles per hour.
Explanation:
Step 1 :
Here, both the ways, he covers the same distance. Then, the formula to find average speed is
= 2xy / (x+y)
Step 2 :
x ----> Rate at which he travels from New York to Washington
x = 45
y ----> Rate at which he travels from New York to Washington
y = 55
Step 3 :
So, the average speed is
= (2 ⋅ 45 ⋅ 55) / (45 + 55)
= 4950 / 100
= 49.5
Answer:
The crust is the first layer of the earth. It is split up into two parts the continental crust, and the oceanic crust. The oceanic crust takes up 71% of the earths crust, and the other 29% of the crust is continental. The continental is made up of igneous rocks, and the oceanic crust is made up of sedimentary and basalt rocks. The continental crust is older than the oceanic crust, some of the rocks are 3.9 billion years old. The density average of the oceanic crust is 3g/cm. The average density of the continental earth is 2.7g/cm. The temperature of the crust is around 200-400 degrees Celsius. The crust is about 60 km thick under a continent and 5 km thick under the ocean. The crust is constantly moving. The crust doesn't even make up 1% of the earth! The crust is the layer were tectonic plates can be found.
Explanation:
<span>It is important to use a fixed common reference point on your work peace or drawing to avoid cumulative error</span>
Answer:
4m/s
Explanation:
The motion is in downward direction, and the boat is moving with constant velocity, the position of the boat horizontally is 12m before the key fall.
The height difference "h"= ( y- y°)= 45 m
We can determine the needed time the key requires to reach the water using the expression from Newton's law
h= v(o) + 1/2 at^2
g= acceleration due to gravity= 9.8m/s^2
h= v(o) + 1/2 gt^2 -------------------------eqn*)
V(o)= 0 for the key= initial velocity
h= height that the key falls= 45m
If we substitute the above values into eqn(*) we have
We can make t^2 subject of the formula since v(0)= 0
t^2= h/(1/2 g)
= 45/(1/2× 9.8)
t^2= 45/4.9=9.18
t= √9.18
t=3.03 secs
Since the boat was moving with constant velocity,
Then Velocity= distance/ time
= 12/3.03
Velocity= 4m/s
Hence, the speed of the boat is 4m/s
Friction force is equal to the applied force F until the block starts moving. Hence, it will increase until the maximum value of 3.0*10*0.50=150 N.
While it's moving, the friction will be 3.0*10*0.2 = 60 N, constant. The rest of the applied force will accelerate the block.