Answer:
potential difference V= 300 volts
Explanation:
Given:
d= 2.0 cm = 0.02m
E = 15 kN/C = 15 × 10³ N/C
For a uniform field between two plates, the Electric Filed Intensity (E) is proportional to the potential difference (V) and inversely proportional to distance between the plates.
E= V/d
⇒ V= E×d = 15 × 10³ N/C × 0.02 m = 300 volts (∴1 Nm/C = 1 J/C= 1 volts)
Weather radar is used to locate precipitation<span>, calculate its motion, and estimate its type rain, snow, </span>hail etc
so, d.measuring temperature <span>is not a use for a weather radar
</span>effect of global warming-<span>heavier rainfall and flooding</span>
Answer:
192.08J
19.6m/s
Explanation:
Since there will be no potential energy when the ball is on the ground, the change in potential energy is equal to the potential energy at the start when the ball is 19.6m above the ground.
PE=mgh
=(1)(9.8)(19.6)
=192.08J
v²=u²+2as, where v is the final velocity, u is initial velocity, a is acceleration and s is distance. Initial velocity is 0 since it starts at rest.
v²=u²+2as
v²=0²+2(9.8)(19.6)
v=√384.16
=19.6m/s
Answer:
The answer is 3.
Explanation:
The answer to this question can be found by applying the right hand rule for which the pointer finger is in the direction of the electron movement, the thumb is pointing in the direction of the magnetic field, so the effect that this will have on the electrons is the direction that the middle finger points in which is right in this example.
So as a result of the magnetic field directed vertically downwards which is at a right angle with the electron beams, the electrons will move to the right and the spot will be deflected to the right of the screen when looking from the electron source.
I hope this answer helps.
Answer a would be correct since velocity is a vector and has a magnitude and a direction. In this case v₁ = - v₂.