1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sonja [21]
3 years ago
8

Come and look on my attachment​

Engineering
1 answer:
CaHeK987 [17]3 years ago
4 0

Crazy Guy what do uh mean ?

You might be interested in
A commercial refrigerator with refrigerant-134a as the working fluid is used to keep the refrigerated space at -30C by rejecting
chubhunter [2.5K]

Answer:

a) x = 0.4795

b) QL = 5.85 KW

c) COP = 2.33

d) QL_max = 12.72 KW

Explanation:

Solution:-

- Assuming the steady state flow conditions for both fluids R-134a and water.

- The thermodynamic properties remain constant for respective independent intensive properties.

- We will first evaluate the state properties of the R-134a and water.

- Compressor Inlet, ( Saturated Vapor ) - Ideal R-134a vapor cycle

              P1 = 60 KPa, Tsat = -36.5°C  

              T1 = -34°C , h1 = hg = 230.03 KJ/kg

              Qin = 450 W - surrounding heat  

- Condenser Inlet, ( Super-heated R-134a vapor ):

              P2 = 1.2 MPa , Tsat = 46.32°C  

              T2 = 65°C   , h2 = 295.16 KJ/kg

- Condenser Outlet, ( Saturation R-134a point ):

             P3 = P2 = 1.2 MPa , Tsat = 46.32°C

             T3 = 42°C   , h3 = hf = 111.23 KJ/kg

- R-134a is throttled to the pressure of P4 = compressor pressure = P1 = 60 KPa by an "isenthalpic - constant enthalpy pressure reduction" expansion valve.

- Inlet of Evaporator - ( liquid-vapor state )

             P4 = P1 = 60 KPa, hf = 3.9 KJ/kg , hfg = 223.9 KJ/kg

             h4 = h3 = 111.23 KJ/kg

- The quality ( x ) of the liquid-vapor R-134a at evaporator inlet can be determined:

             x4 = ( h4 - hf ) / hfg

             x4 = ( 111.23 - 3.9 ) / 223.9

             x4 = 0.4795      Answer ( a )        

- Water stream at a flow rate flow ( mw ) = 0.25 kg/s is used to take away heat from the R-134a.

- Condenser Inlet, ( Saturated liquid water ):

             Ti = 18°C , h = hf = 75.47 KJ/kg  

- Condenser Outlet, ( Saturated liquid water ):

             To = 26°C , h = hf = 108.94 KJ/kg

- Since the heat of R-134a was exchanged with water in the condenser. The amount of heat added to water (Qh) is equal to amount of heat lost from refrigerant R-134a.

- Apply thermodynamic balance on the R-134a refrigerant in the condenser:

             Qh = flow (mr) * [ h2 - h3 ]

Where,

flow ( mr ) : The flow rate of R-134a gas in the refrigeration cycle

             flow ( mr ) = Qh / [ h2 - h3 ]

             flow ( mr ) = 8.3675 / [ 295.16 - 111.23 ]

             flow ( mr ) = 0.0455 kg/s

- The cooling load of the refrigeration cycle ( QL ) is determined from energy balance of the cycle net work input ( Compressor work input ) - "Win" and the amount of heat lost from R-134a in condenser ( Qh ).

- Apply the thermodynamic balance for the compressor:

           

            Win = flow ( mr )*[ h2 - h1 ] - Qin

            Win = 0.0455*[ 295.16 - 230.03] KW - 0.45 KW

            Win = 2.513 KW

- The cooling load ( QL ) for the refrigeration cycle can now be calculated. Apply thermodynamic balance for the refrigeration cycle:

            QL = Qh - Win

            QL = 8.3675 - 2.513

            QL= 5.85 KW  .... Refrigeration Load, Answer ( b )

- The COP of the refrigeration cycle is calculated as the ratio of useful work and total work input required:

           

             COP = QL / Win

             COP = 5.85 / 2.513

             COP =  2.33      Answer ( c )            

- For a compressor to be working at 100% efficiency or ideal then the maximum COP for the refrigeration cycle would be:

           

             COP_max = [ TL ] / [ Th - TL ]

Where,

            TL : The absolute temperature of heat sink, refrigerated space

            TH : The absolute temperature of heat source, water inlet

                 

            COP_max = [ -30+273 ] / [ (18+273) - (-30+273) ]          

            COP_max = 5.063

- The theoretical ideal refrigeration load ( QL max ) would be:

     

           COP_max = QL_max / Win

           QL_max = Win*COP_max

           QL_max = 2.513*5.063

           QL_max = 12.72 KW     Answer ( d )

5 0
4 years ago
A 100-horsepower, three-phase squirrel-cage induction motor is connected to a 240-volt line. A dual-element time-delay fuse is t
antoniya [11.8K]

Based on the National Electrical Code (NEC), a 450-Ampere fuse should be used to protect this polyphase (three-phase) squirrel cage inductor motor.

<u>Given the following data:</u>

  • Power rating = 100-horsepower.
  • Voltage = 240 volt.

<h3>How to determine the correct fuse rating?</h3>

According to Table 430.52 of the National Electrical Code (NEC), a dual-element time delay fuse should be calculated at 175% (1.75) of the full-load current rating for an alternating current (AC) polyphase (three-phase) squirrel cage inductor motor.

In this scenario, the squirrel cage inductor motor didn't list a NEMA design code on its nameplate. Thus, we'll assume that the inductor motor is design B and its fuse rating is given by:

Fuse rating = 248 × 1.75 × 434

In conclusion, the nearest standard fuse size which is above the computed value listed in Section 240.6 of the National Electrical Code (NEC) is 450 amperes.

Read more on National Electrical Code here: brainly.com/question/10619436

#SPJ1

6 0
2 years ago
A commercial facility has a three-phase, 277 volt, 1200 Amp service. What is the required nominal transformer size needed for th
alekssr [168]

Answer:

The answer is "Option e".

Explanation:

Given value:

\to v_{ph}=277  \ \ \ \ \ \ \  I_{ph} =1200\\\\

vA= v_{Ph} I_{ph}  \  \ \ \to  for \ single \ phase\\\\=3v_{ph} I_{ph}  \ \ \ \ \ \to  for \ 3 - \phi  \\\\s = 3\times 277 \times 1200 \\\\

  =997.200 \ K VA\\\\= 1000 \ k VA

7 0
3 years ago
Help me on this questions?
VMariaS [17]

Answer:

1)f

thats all i know sorry ;-;

4 0
3 years ago
Read 2 more answers
Ammonia gas is diffusing at a constant rate through a layer of stagnant air 1 mm thick. Conditions are such that the gas contain
fiasKO [112]

Answer:

The solution to this question is 5.153×10⁻⁴(kmol)/(m²·s)

That is the rate of diffusion of ammonia through the layer is

5.153×10⁻⁴(kmol)/(m²·s)

Explanation:

The diffusion through a stagnant layer is given by

N_{A}  = \frac{D_{AB} }{RT} \frac{P_{T} }{z_{2} - z_{1}  } ln(\frac{P_{T} -P_{A2}  }{P_{T} -P_{A1} })

Where

D_{AB} = Diffusion coefficient or diffusivity

z = Thickness in layer of transfer

R = universal gas constant

P_{A1} = Pressure at first boundary

P_{A2} = Pressure at the destination boundary

T = System temperature

P_{T} = System pressure

Where P_{T} = 101.3 kPa P_{A2} =0, P_{A1} =y_{A}, P_{T} = 0.5×101.3 = 50.65 kPa

Δz = z₂ - z₁ = 1 mm = 1 × 10⁻³ m

R =  \frac{kJ}{(kmol)(K)} ,    T = 298 K   and  D_{AB} = 1.18 \frac{cm^{2} }{s} = 1.8×10⁻⁵\frac{m^{2} }{s}

N_{A} = \frac{1.8*10^{-5} }{8.314*295} *\frac{101.3}{1*10^{-3} }* ln(\frac{101.3-0}{101.3-50.65}) = 5.153×10⁻⁴\frac{kmol}{m^{2}s }

Hence the rate of diffusion of ammonia through the layer is

5.153×10⁻⁴(kmol)/(m²·s)

5 0
3 years ago
Other questions:
  • Put the letters representing the four main
    7·1 answer
  • Why does a foil airplane fly farther than a paper one?
    6·1 answer
  • What do you enjoy most and least about engineering?
    15·2 answers
  • One kilogram of water fills a 150 L rigid container at an initial pressure of 2MPa. The container is cooled to 40 oC. Find the i
    7·2 answers
  • The minimum size for overhead service conductors shall not be smaller than ____ AWG copper. A. 4 B. 6 C. 8 D. 10
    13·1 answer
  • Consider a mixture of hydrocarbons that consists of 60 percent (by volume) methane, 30 percent ethane, and 10 percent propane. A
    13·1 answer
  • The part dimension for an injection-molded part made of polycarbonate is specified as 4.00 in. Compute the corresponding dimensi
    15·1 answer
  • 11) If the evaporating pressure was 76 psig for r-22and the compressor inlet temperature was 65f, what would be the total superh
    13·1 answer
  • A 4-L pressure cooker has an operating pressure of 175 kPa. Initially, one-half of the volume is filled with liquid and the othe
    10·1 answer
  • How can the use of local materials improve the standard of living of Filipinos?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!