The precaution to be taken while measuring the temperature of a liquid in a beaker is applying proper heat balance and taking all the required precautions.
- A beaker with an open top contains a sample of liquid. It exposes this sample to light.
- That liquid absorbs the light energy, turning it into heat energy. As a result, the liquid becomes warmer and evaporation is accelerated. As a result, there is less liquid in the beaker.
- Since it is well known that the surface temperature of a liquid, along with air movement above the liquid surface, is one of the dominant factors affecting evaporation, I want to measure the evaporation rate as a function of surface temperature.
- This can be done by applying a heat balance.
Learn more about heat balance at:
brainly.com/question/1292905
#SPJ9
Charge can be transferred from one object to another in three way conduction, polarization, and friction
Whenever electrons are transferred between objects, neutral matter becomes charged and three ways this can occur are referred to as conduction, polarization, and friction conduction means when there is direct contact between materials that differ in their ability to give up or accept electrons when two different materials are rubbed together, there is a transfer of electrons from one material to the other material and this causes one object to become positively charged (the electron loser) and the other object to become negatively charged (the electron gainer)
Here given object is water + balloon; balloon + wall; tape then you rub a balloon against your clothes and it sticks to the wall, you are adding a surplus of electrons (negative charges) to the surface of the balloon the wall is now more positively charged than the balloon and we tested the conductivity of deionized water positively charged
Know more about charge transferred one object to another
brainly.com/question/28661233
#SPJ1
Answer:
Radiation is energy. It can come from unstable atoms that undergo radioactive decay, or it can be produced by machines. Radiation travels from its source in the form of energy waves or energized particles. There are different forms of radiation and they have different properties and effects.
Related information in Spanish (Información relacionada en español)
On this page:
Ionizing and non-ionizing radiation
Electromagnetic spectrum
Types of ionizing radiation
Periodic Table
Non-Ionizing and Ionizing Radiation
There are two kinds of radiation: non-ionizing radiation and ionizing radiation.
Non-ionizing radiation has enough energy to move atoms in a molecule around or cause them to vibrate, but not enough to remove electrons from atoms. Examples of this kind of radiation are radio waves, visible light and microwaves.
Ionizing radiation has so much energy it can knock electrons out of atoms, a process known as ionization. Ionizing radiation can affect the atoms in living things, so it poses a health risk by damaging tissue and DNA in genes. Ionizing radiation comes from x-ray machines, cosmic particles from outer space and radioactive elements. Radioactive elements emit ionizing radiation as their atoms undergo radioactive decay.
Radioactive decay is the emission of energy in the form of ionizing radiationHelpionizing radiationRadiation with so much energy it can knock electrons out of atoms. Ionizing radiation can affect the atoms in living things, so it poses a health risk by damaging tissue and DNA in genes.. The ionizing radiation that is emitted can include alpha particles, beta particles and/or gamma raysHelpgamma raysA form of ionizing radiation that is made up of weightless packets of energy called photons. Gamma rays can pass completely through the human body; as they pass through, they can cause damage to tissue and DNA.. Radioactive decay occurs in unstable atoms called radionuclides.
Explanation:
Answer:
5.7 moles of O2
Explanation:
We'll begin by writing the balanced decomposition equation for the reaction. This is illustrated below:
2KClO3 —> 2KCl + 3O2
From the balanced equation above,
2 moles of KClO3 decomposed to produce 3 moles of O2.
Next, we shall determine the number of mole of O2 produced by the reaction of 3.8 moles of KClO3.
Since 100% yield of O2 is obtained, it means that both the actual yield and theoretical yield of O2 are the same. Thus, we can obtain the number of mole of O2 produced as follow:
From the balanced equation above,
2 moles of KClO3 decomposed to produce 3 moles of O2.
Therefore, 3.8 moles of KClO3 will decompose to produce = (3.8 × 3)/2 = 5.7 moles of O2.
Thus, 5.7 moles of O2 were obtained from the reaction.