Answer:
it gravitional pull on earth will increased becauste it is compress to a form of moon which is comperatively smaller so the gravitonal pull on per cm of earth will incrased so we can say that there will be change in acceleration due to gravity
Answer:
Δy= 5,075 10⁻⁶ m
Explanation:
The expression that describes the interference phenomenon is
d sin θ = (m + ½) λ
As the observation is on a distant screen
tan θ = y / x
tan θ= sin θ/cos θ
As in ethanes I will experience the separation of the vines is small and the distance to the big screen
tan θ = sin θ
Let's replace
d y / x = (m + ½) λ
The width of a bright stripe at the difference in distance
y₁ = (m + ½) λ x / d
m = 1
y₁ = 3/2 λ x / d
Let's use m = 1, we look for the following interference,
m = 2
y₂ = (2+ ½) λ x / d
The distance to the screen is constant x₁ = x₂ = x₀
The width of the bright stripe is
Δy = λ x / d (5/2 -3/2)
Δy = 630 10⁻⁹ 2.90 /0.360 10⁻³ (1)
Δy= 5,075 10⁻⁶ m
Answer:
1.13 mA
Explanation:
Length of wire L = 20.5 cm = 0.205m
Radius of wire r = 2.60/2 = 1.3cm = 0.0130m
Voltage V = 1 × 10³ V
Resistivity of pure silicon p = 2300 Ohms • m
Cross sectional area of the wire
A = pi × r² = pi × (0.013)² = 5.307 × 10 ^-4 m²
Resistance of the material
R = p• L/A
= 2300 • 0.205/5.307 × 10^-4 = 0.888 × 10⁶ Ohms
Using Ohms Law
R = V/ I
I = V/R
I = 10³/0.888 × 10⁶
= 0.001126 A
= 1.13 mA
Answer:
The magnitude of the magnetic force this particle experiences is
.
Explanation:
Given that,
Velocity v= (3i-5j+k) m/s
Magnetic field B=(i+2j-k) T
We need to calculate the value 

We need to calculate the magnitude of the magnetic force this particle experiences
Using formula of magnetic force

Put the value into the formula



Hence, The magnitude of the magnetic force this particle experiences is
.
The answer is D.All of the above