Answer:
V = 6.17 L
Explanation:
Given data:
Volume = ?
Number of moles = 0.382 mol
Pressure = 1.50 atm
Temperature = 295 k
R = 0.0821 L. atm. /mol. k
Solution:
According to ideal gas equation:
PV= nRT
V = nRT/P
V = 0.382 mol × 0.0821 L. atm. /mol. k ×295 k / 1.50 atm
V = 9.252 L. atm. / 1.50 atm
V = 6.17 L
Answer:
0.83 mL
Explanation:
Given data
- Initial concentration (C₁): 12 M
- Final concentration (C₂): 1.0 M
- Final volume (V₂): 10.0 mL
We can calculate the initial volume of HCl using the dilution rule.
C₁ × V₁ = C₂ × V₂
V₁ = C₂ × V₂ / C₁
V₁ = 1.0 M × 10.0 mL / 12 M
V₁ = 0.83 mL
The required volume of the initial solution is 0.83 mL.
Can hold max of 8 electrons
<span>A transformation that is invariant with respect to distance. That is, the distance between any two points in the pre-image must be the same as the distance between the images of the two points.</span>
1. Density=mass/volume=2kg/6m=0.33kg/m (convert to proper units)
2. Density=mass/volume=0.6kg/3L=0.2kg/L (convert to proper units)
3. Density=mass/volume= 129g / 30 cm (convert to proper units)
V=length*width*height=2*3*5 = 30
4. Volume (units) = cm^3 because, like in problem 3, Volume=width(cm)*length(cm)*height(cm)
However, when you pour liquid into a cylinder (so the volume would be the liquid), you measure it in mL.
5. Volume with rock - initial volume (without the rock) = Volume of rock
18.2-12.7= 5.5