Answer:
[Ca²⁺] = 1M
[NO₃⁻] = 2M
Explanation:
Calcium nitrate dissociates in water as follows:
Ca(NO₃)₂ ⇒ Ca²⁺ + 2NO₃⁻
The moles of Ca²⁺ can be found using the molar relationship between Ca(NO₃)₂ and Ca²⁺
(0.100mol Ca(NO₃)₂) (Ca²⁺ /Ca(NO₃)₂) = 0.100 mol Ca²⁺
The concentration of Ca²⁺ is then:
[Ca²⁺] = n/V = (0.100mol)/(100.0mL) x (1000ml)/(1L) = 1M
Similarly, moles of NO₃⁻ can be found using the molar relationship between Ca(NO₃)₂ and NO₃⁻:
(0.100mol Ca(NO₃)₂) (2NO₃⁻/Ca(NO₃)₂) = 0.200 mol NO₃⁻
The concentration of NO₃⁻ is then:
[NO₃⁻] = (0.200mol)/(100.0mL) x (1000ml)/(1L) = 2M
There are a couple of ways in which you can express the concentration of a solution, and here they are: gram per liter (g/L), molarity (M), parts per million (ppm.), and percents (%).
As you can see, only M appears in your answers, which means that the correct option should be (2) 3.5 M.
One of the most worrisome waste products of a nuclear reactor is plutonium 239 (239Pu). This nucleus is radioactive and decays by splitting into a helium-4 nucleus and a uranium-235 nucleus (4He +... Q: One of the most worrisome waste products of a nuclear reactor is plutonium 239 (239Pu<span>).</span>
B. the periodic law
Explanation:
The periodic law was not explained by the Dalton's atomic theory.
The periodic law was first postulated by Dimitry Mendeleef and Lothar Meyer around 1869 where they independently arrived at the periodic table or chart.
- The table was based on the periodic law which states that "chemical properties of elements are a periodic function of their atomic weights".
- The modern periodic law was restated by Henry Moseley in the early 1900s. He changed the basis of the law to atomic number.
- The present periodic law is stated as "the properties of elements are a periodic function of their atomic number".
The laws of conservation of mass, multiple proportions and definite proportions are all explained by the Dalton's atomic theory.
learn more:
Dalton's model of the atom brainly.com/question/1979129
#learnwithBrainly