Answer:
particles of gold
Explanation:
To convert the number of moles of any substance, in this case gold, you need Avogadro's number.
Avogadro's number is always
× 
moles Au ×
=
particles of gold
Answer:
Bond energy of carbon-fluorine bond is 485 kJ/mol
Explanation:
Enthalpy change for a reaction, is given as:
![\Delta H_{rxn}=\sum [n_{i}\times (E_{bond})_{i}]-\sum [n_{j}\times (E_{bond})_{j}]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5Csum%20%5Bn_%7Bi%7D%5Ctimes%20%28E_%7Bbond%7D%29_%7Bi%7D%5D-%5Csum%20%5Bn_%7Bj%7D%5Ctimes%20%28E_%7Bbond%7D%29_%7Bj%7D%5D)
Where
and
represents average bond energy in breaking "i" th bond and forming "j" th bond respectively.
and
are number of moles of bond break and form respectively.
In this reaction, one mol of C=C, four moles of C-H and one mol of F-F bonds are broken. One mol of C-C bond, four moles of C-H bonds and two moles of C-F bonds are formed
So, 
or, 
or, 
So bond energy of carbon-fluorine bond is 485 kJ/mol
Convert Mg to grams
1g =1000mg what about 3.91 Mg
= 3.91mg x 1g/1000mg= 3.91 x10^-3 g
moles= mass/molar mass
that is 3.91 x10^-3g /99 g/mol=3.95 x10^-5moles
concentration= moles / vol in liters
that is 3.95 x10^-5/100 x1000= 3.94 x10^-4M
equation for dissociation of CUCl= CUCl----> CU^+ +Cl^-
Ksp=(CU+)(CI-)
that is (3.95 x10^-4)(3.95 x10^-4)
Ksp= 1.56 x10^-7
Answer is: a) I only.
Above critical temperature of CO₂, a gas cannot be liquefied no matter how much pressure is applied. Temperature and pressure above its critical point is called supercritical fluid and this is <span>intermediate between gaseous and liquid states.</span>
The number of calories that are required to change the temperature of 2.18 g of water from 15.3 c to 69.5 c is <u>118.16 cal</u>
<u><em> calculation</em></u>
- Heat in calories = MCΔ T where,
- M(mass)= 2.18 g
- C(specific heat capacity)= 1.00 cal/g/c
- ΔT( change in temperature)= 69.5- 15.3 =54.2 c
heat is therefore= 2.18 g x 1.00 cal/g/c x 54.2 c=118.16 cal