Answer:
See explanation
Explanation:
The periodic table shows the atomic number and mass number of each element.
We know that the atomic number shows;
- The number of protons in the nucleus of the atom
- The number of electrons in the neutral atom of the element.
So we obtain the number of protons and electrons by looking at the atomic number shown in the periodic table.
We also know that;
Mass number = Number of protons + number of neutrons
Since number of protons = atomic number of the atom
Number of neutrons = Mass number - atomic number
Hence we obtain the number of protons by subtracting the atomic number from the mass number given in the periodic table.
<span>Li2O2 is the formula
</span>
Answer:
- Partial pressure He = 276 torr
- Partial pressure Ar = 457 torr
- Total pressure = 733 torr
Explanation:
Assuming temperature remains constant, we can use Boyle's law to solve this problem: P₁V₁=P₂V₂.
Once the two flasks are connected and the stopock opened, the total volume is:
Now we use Boyle's law <em>twice</em>, to <u>calculate the new pressure of </u><em><u>each</u></em><u> gas</u>:
- He ⇒ 752 torr * 275 mL = P₂He * 750 mL
P₂He = 276 torr
- Ar ⇒ 722 torr * 475 mL = P₂Ar * 750 mL
P₂Ar = 457 torr
Finally we <u>calculate the total pressure</u>, adding the partial pressures:
- Total pressure = P₂He + P₂Ar = 733 torr
Answer:
We expect the enthalpies of combustion of two isomers to be different.
The molecular formular of the two molecules are very similar.
So the balanced chemical equation for the two combustion reactions are the same.
Explanation:
In calculation of the combustion enthalpiesfrom the isomers of the products and reactant.
The difference will be in the standard enthalpies of formation of the two combustion products.
The rod-shaped n- octane has vibrational and rotational motion possible more than the almost spherical neoprene.