The solution to the problem is as follows:
<span>Average = 80
So Sum = 80 * 5 = 400
Mode = 88, so two results are 88 (if three results were 88, then the median would be 88).
Three results are 81, 88, and 88.
That leaves 143. We could still have one 81 score, so that leaves the lowest score as 62.
Greg is in a car at the top of a roller-coaster ride. The distance, d, of the car from the ground as the car descends is determined by the equation d = 144 - 16t2, where t is the number of seconds it takes the car to travel down to each point on the ride. How many seconds will it take Greg to reach the ground?
d = 144 - 16t2
0 = 144 - 16t2
16t^2=144
t^2=9
t=3</span>
The answer is always true a
Answer:
Comparison Microscope
Explanation:
The Comparison Microscope allows for comparison between two objects or samples by placing them side by side.
It is primarily used in criminology for ballistics which makes it ideal to find out if bullets, shells, or cartridge cases were fired from a specific weapon.
working...
Sound wave needs medium to travel
as energy which travels in this wave is because of transfer from one particle to another particle
If there is no medium then energy can not be transferred and sound wave will not travel
so in vacuum we can not listen sound
similarly here air is removed it means there is no medium inside the jar to travel the sound and hence we can not hear it
Option B is correct
Without air, the sound waves cannot travel to the ear.
Answer:
a_total = 2 √ (α² + w⁴)
, a_total = 2,236 m
Explanation:
The total acceleration of a body, if we use the Pythagorean theorem is
a_total² = a_T²2 +
²
where
the centripetal acceleration is
a_{c} = v² / r = w r²
tangential acceleration
a_T = dv / dt
angular and linear acceleration are related
a_T = α r
we substitute in the first equation
a_total = √ [(α r)² + (w r² )²]
a_total = 2 √ (α² + w⁴)
Let's find the angular velocity for t = 2 s if we start from rest wo = 0
w = w₀ + α t
w = 0 + 1.0 2
w = 2.0rad / s
we substitute
a_total = r √(1² + 2²) = r √5
a_total = r 2,236
In order to finish the calculation we need the radius to point A, suppose that this point is at a distance of r = 1 m
a_total = 2,236 m