Answer:
1.) 274.5v
2.) 206.8v
Explanation:
1.) Given that In one part of the lab activities, students connected a 2.50 µF capacitor to a 746 V power source, whilst connected a second 6.80 µF capacitor to a 562 V source.
The potential difference and charge across EACH capacitor will be
V = Voe
Where Vo = initial voltage
e = natural logarithm = 2.718
For the first capacitor 2.50 µF,
V = Vo × 2.718
746 = Vo × 2.718
Vo = 746/2.718
Vo = 274.5v
To calculate the charge, use the below formula.
Q = CV
Q = 2.5 × 10^-6 × 274.5
Q = 6.86 × 10^-4 C
For the second capacitor 6.80 µF
V = Voe
562 = Vo × 2.718
Vo = 562/2.718
Vo = 206.77v
The charge on it will be
Q = CV
Q = 6.8 × 10^-6 × 206.77
Q = 1.41 × 10^-3 C
B.) Using the formula V = Voe again
165 = Vo × 2.718
Vo = 165 /2.718
Vo = 60.71v
Q = C × 60.71
Q = C
Answer:
F = 2,894 N
Explanation:
For this exercise let's use Newton's second law
F = m a
The acceleration is centripetal
a = v² / r
Angular and linear variables are related.
v = w r
Let's replace
F = m w² r
The radius r and the length of the rope is related
cos is = r / L
r = L cos tea
Let's replace
F = m w² L cos θ
Let's reduce the magnitudes to the SI system
m = 101.7 g (1 kg / 1000g) = 0.1017 kg
θ = 5 rev (2π rad / rev) = 31,416 rad
w = θ / t
w = 31.416 / 5.1
w = 6.16 rad / s
F = 0.1017 6.16² 0.75 cos θ
F = 2,894 cos θ
The maximum value of F is for θ equal to zero
F = 2,894 N
Answer:
Answer:
the amount of energy flowing is 1.008x10⁹J
Explanation:
To calculate how much heat flows, the expression is the following:
Where
K=thermal conductivity=0.81W/m°C
A=area=6.2*12=74.4m²
ΔT=30-8=22°C
L=thickness=8cm=0.08m
t=time=16.9h=60840s
Replacing:
Explanation: