Answer:
ΔG°rxn = +50.8 kJ/mol
Explanation:
It is possible to obtain ΔG°rxn of a reaction at certain temperature from ΔH°rxn and S°rxn, thus:
<em>ΔG°rxn = ΔH°rxn - T×S°rxn (1)</em>
In the reaction:
2 HNO3(aq) + NO(g) → 3 NO2(g) + H2O(l)
ΔH°rxn = 3×ΔHfNO2 + ΔHfH2O - (2×ΔHfHNO3 + ΔHfNO)
ΔH°rxn = 3×33.2kJ/mol + (-285.8kJ/mol) - (2×-207.0kJ/mol + 91.3kJ/mol)}
ΔH°rxn = 136.5kJ/mol
And S°:
S°rxn = 3×S°NO2 + S°H2O - (2×S°HNO3 + S°NO)
ΔH°rxn = 3×0.2401kJ/molK + (0.0700kJ/molK) - (2×0.146kJ/molK + 0.2108kJ/molK)
ΔH°rxn = 0.2875kJ/molK
And replacing in (1) at 298K:
ΔG°rxn = 136.5kJ/mol - 298K×0.2875kJ/molK
<em>ΔG°rxn = +50.8 kJ/mol</em>
<em />
Answer:
C co2 2co enthalpy
2 Answers. Ernest Z. The standard enthalpy of formation of carbon monoxide is -99 kJ/mol.
Answer:
V/V% = 8.2%
Explanation:
Given data:
Volume of methanol = 37.5 mL
Volume of solution = 456 mL
V/V% = ?
Solution:
V/V% = [volume of solute / volume of solution ]×100
V/V% = 37.5 mL / 456 mL × 100
V/V% = 0.08× 100
V/V% = 8.2%
Answer:
It helps microorganisms grow
Explanation:
I think this is the correct answer because I tried searching it up and you sterilise the petri dish before adding the agar, I've used agar in petri dishes a year ago and im pretty sure they don't make cells glow or make bacteria appear larger.
if I had to have a second guess I'd go with the first one but considering the fact that bacteria is usually to small to see with the naked eye the last option seems correct