Answer:
0.238 M
Explanation:
A 17.00 mL sample of the dilute solution was found to contain 0.220 M ClO₃⁻(aq). The concentration is an intensive property, so the concentration in the 52.00 mL is also 0.220 M ClO₃⁻(aq). We can find the initial concentration of ClO₃⁻ using the dilution rule.
C₁.V₁ = C₂.V₂
C₁ × 24.00 mL = 0.220 M × 52.00 mL
C₁ = 0.477 M
The concentration of Pb(ClO₃)₂ is:

Answer:
The answer to your question is: Initial temperature of copper = 67.1°C
Explanation:
Data
mass Copper = 248 g
volume Water = 390 ml
T1 water = 22.6°C
T2 = 39.9°C
T1 copper = ?
Specific heat water = 1 cal/g°C
Specific heat copper = 0.092 cal/g°C
Formula copper water
Heat is negative for copper because it releases heat
- mCp(T2 - T1) = mCp(T2 - T1)
- (248)(39.9 - T1) = 390 (1)((39.9 - 22.6) Substitution
-9895.2 + 248T1 = 390(17.3) Simplification
-9895.2 + 248T1 = 6747
248 T1 = 6747 + 9895.2
248 T1 = 16642.2
T1 = 16642.2 / 248
T1 = 67.1 °C Result
The answer is A warm air rises cool air sinks
So potassium is more reactive than lithium because the outer electron of a potassium atom is further from its nucleus than the outer electron of a lithium atom. Hope this answers the question. Have a nice day. Feel free to ask more questions.