Answer
given,
before collision
mass of car A = m_a = 1300 kg
velocity of car A = v_a = 35 mph
mass of car B = m_b= 1000 kg
velocity of car B = v_b = 25 mph
after collision
V_a = 30 mph
V_b = 31.5 mph
Initial momentum



final momentum



here initial momentum is equal to the final momentum of the car.
hence, momentum is conserved in the collision.
Anytime that an unstable nucleus emits alpha or bets particles, the number of protons and neutrons changes. ... In the fission process, when the nucleus splits, both neutrons and energy are released
1.The answer is True
2.The answer is False
Answer:
temperature change is 262.06°K
Explanation:
given data
mass = 0.07 kg
velocity = 258 m/s
to find out
what is its temperature change
solution
we know here
heat change Q is is equal to kinetic energy that is
KE = 0.5 × m× v² ...........1
here m is mass and v is velocity
KE = 0.5 × 0.07 × 258²
KE = 2329.74 J
and we know
Q = mC∆t .................2
here m is mass and ∆t is change in temperature and C is 127J/kg-K
so put here all value
2329.74 = 0.07 × 127 × ∆t
∆t = 262.06
so temperature change is 262.06°K