<span>1) at rest his
weight is 840 N
=> 840N = mass * g => mass = 840 N / g = 840 N / 9.8 m/s^2 = 85.7 kg
2) as the elevator rises, his weight increases to 1050 N,
The reading of the scale is the norma force of it over the body of the person.
And the equation for the force is: Net force = mass * acceleration = normal force - weight at rest
=> mass * acceleration = 1050 N - 840 N = 210 N
acceleration = 210 N / mass = 210 N / 85.7 kg = 2.45 m/s^2 (upward)
3) when the elevator slows to a stop at the 10th
floor, his weight drops to 588 N
=> mass * acceleration = 588 N - 840 N = - 252 N
=> acceleration = - 252 N / 85.71 kg = - 2.94 m / s^2 (downward)
Answer:
Acceleration at the beginning of the trip 2.45 m/s^2 upward
Acceleration at the end of the trip 2.94 m/s^2 downward
</span>
Answer:
54.3N
Explanation:
The normal force is perpendicular to the slope, so:
Normal Force = cos(37.2)(9.8*65).......507.39N
F(friction)=mu*F(normal)
F(friction)=(0.107)(507.39)
F(friction)=54.3N
This question involves the concepts of Wein's displacement law and characteristic wavelength.
The blackbody temperature will be "3.22 x 10⁵ k".
<h3>WEIN'S DISPLACEMENT LAW</h3>
According to Wein's displacement law,

where,
= characteristic wavelength = 9 μm = 9 x 10⁻⁹ m- T = temperature = ?
- c = Wein's displacment constant = 2.897 x 10⁻³ m.k
Therefore,

T = 3.22 x 10⁵ k
Learn more about characteristic wavelength here:
brainly.com/question/14650107
Answer:
energy is conserved
a force sets an object in motion. when the force is multiplied by the time of its application we call the quantity impulse which changes the momentum of that object. what do we call the quantity force x (times) distance, and what quantity can this change?