(a) The period of the oscillation is 0.8 s.
(b) The frequency of the oscillation is 1.25 Hz.
(c) The angular frequency of the oscillation is 7.885 rad/s.
(d) The amplitude of the oscillation is 3 cm.
(e) The force constant of the spring is 148.1 N/m.
The given parameters:
- <em>Mass of the ball, m = 2.4 kg</em>
<em />
From the given graph, we can determine the missing parameters.
The amplitude of the wave is the maximum displacement, A = 3 cm
The period of the oscillation is the time taken to make one complete cycle.
T = 0.8 s
The frequency of the oscillation is calculated as follows;

The angular frequency of the oscillation is calculated as follows;

The force constant of the spring is calculated as follows;

Learn more about general wave equation here: brainly.com/question/25699025
Answer:
4.18
Explanation:
Givens
The car's initial velocity
= 0 and covering a distance Δx = 1/4 mi = 402.336 m in a time interval t = 4.43 s.
Knowns
We know that the maximum static friction force is given by:
μ_s*n (1)
Where μ_s is the coefficient of static friction and n is the normal force.
Calculations
(a) First, we calculate the acceleration needed to achieve this goal by substituting the given values into a proper kinematic equation as follows:
Δx=
a=41 m/s
This is the acceleration provided by the engine. Applying Newton's second law on the car, so in equilibrium, when the car is about to move, we find that:

Substituting (3) into (1), we get:
μ_s*m*g
Equating this equation with (4), we get:
ma= μ_s*m*g
μ_s=a/g
=4.18
The Earth itself is a source of terrestrial radiation. Radioactive materials including uranium, thorium, and radium exist naturally in soil and rock. Essentially all air contains radon<span> , which is responsible for most of the dose that Americans receive each year from natural background sources.</span>
Answer:
wen I was in the car toing home from school after a bad day n si si I have crazzyyy