The answer should be B. a stable isotope to a decaying isotope.
Answer:
Because the wavelengths of macroscopic objects are too short for them to be detectable.
Explanation:
Wavelength of an object is given by de Broglie wavelength as:

Where, 'h' is Planck's constant, 'm' is mass of object and 'v' is its velocity.
So, for macroscopic objects, the mass is very large compared to microscopic objects. As we can observe from the above formula, there is an inverse relationship between the mass and wavelength of the object.
So, for vary larger masses, the wavelength would be too short and one will find it undetectable. Therefore, we don't observe wave properties in macroscopic objects.
They are formed when two plates collide, either crumpling up and forming mountains or pushing one of the plates under the other and back into the mantle to melt. Convergent boundaries form strong earthquakes, as well as volcanic mountains or islands, when the sinking oceanic plate melts.