Answer:

Step-by-step explanation:
Hello, please consider the following.
We have two equations:
(1) -2x - 4y = 20
(2) -3x + 5y = -25
5*(1)+4*(2) gives
-10x - 20y -12x + 20y = 100 - 100 = 0
-22x = 0
x = 0
I replace in (1)
-4y = 20
y = -20/4 = -5
There is one solution x = 0, y = -5
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
Answer:
Step-by-step explanation:
We have the equations
4x + 3y = 18 where x = the side of the square and y = the side of the triangle
For the areas:
A = x^2 + √3y/2* y/2
A = x^2 + √3y^2/4
From the first equation x = (18 - 3y)/4
So substituting in the area equation:
A = [ (18 - 3y)/4]^2 + √3y^2/4
A = (18 - 3y)^2 / 16 + √3y^2/4
Now for maximum / minimum area the derivative = 0 so we have
A' = 1/16 * 2(18 - 3y) * -3 + 1/4 * 2√3 y = 0
-3/8 (18 - 3y) + √3 y /2 = 0
-27/4 + 9y/8 + √3y /2 = 0
-54 + 9y + 4√3y = 0
y = 54 / 15.93
= 3.39 metres
So x = (18-3(3.39) / 4 = 1.96.
This is a minimum value for x.
So the total length of wire the square for minimum total area is 4 * 1.96
= 7.84 m
There is no maximum area as the equation for the total area is a quadratic with a positive leading coefficient.
Sum means add
sum of the 3 is
n+n+1+n+2
it add to 57
n+n+1+n+2=57
3n+3=57
minus 3 both sides
3n=54
divide both sides by 3
n=15
n+1=16
n+2=17
the integers are 15,16, and 17
Answer:
system of equations
Step-by-step explanation:
You can eliminate one of the variable terms in a <u>system of equations</u> by adding or subtracting another equation.