Answer:
0.001 s
Explanation:
The force applied on an object is equal to the rate of change of momentum of the object:

where
F is the force applied
is the change in momentum
is the time interval
The change in momentum can be written as

where
m is the mass
v is the final velocity
u is the initial velocity
So the original equation can be written as

In this problem:
m = 5 kg is the mass of the fist
u = 9 m/s is the initial velocity
v = 0 is the final velocity
F = -45,000 N is the force applied (negative because its direction is opposite to the motion)
Therefore, we can re-arrange the equation to solve for the time:

Answer:
The magnitude of the tension on the ends of the clothesline is 41.85 N.
Explanation:
Given that,
Poles = 2
Distance = 16 m
Mass = 3 kg
Sags distance = 3 m
We need to calculate the angle made with vertical by mass
Using formula of angle



We need to calculate the magnitude of the tension on the ends of the clothesline
Using formula of tension

Put the value into the formula


Hence, The magnitude of the tension on the ends of the clothesline is 41.85 N.
The answer is B because if you use process of elimination, you find that A is invalid because Venus is the second planet. C is out because Mars is the 4th planet. D is out because we are nowhere near the Andromeda Galaxy. We are millions of light years away.
Answer:
Option B, Some of the cars' kinetic energy was converted to sound and heat energy.
Explanation:
In an elastic collision, no energy is lost during and after collision. Thus, it can be said that in an elastic collision both momentum and kinetic energy remains conserved.
While in non-elastic collision, kinetic energy of the system is lost. However, the momentum of the system is conserved. Generally, during and after collision some of the kinetic energy is lost as thermal energy, sound energy etc.
Hence, option B is correct
Answer:shorter higher
Explanation:Compare to visible light, the wavelength of X-rays is shorter and then frequency is higher