H2SO4 ---> 2H^+ + SO4^2-
Hence n H+ = 9 mols
Mass of H = nM = (9*1) = 9g
Alternately
mass of H2SO4= nM= 4.5*98= 441
Mass of H= mass h2so4 * molar mass of H/molar mass of h2so4
Mass of H= 441 * 2/98 = 9g
Answer:
dium (a liquid or a gas). This pattern of motion typically consists of random fluctuations in a particle's position inside a fluid sub-domain, followed by a relocation to another sub-domain. Each relocation is followed by more fluctuations within the new closed volume. This pattern describes a fluid at thermal equilibrium, defined by a given temperature. Within such a fluid, there exists no preferential direction of flow (as in transport phenomena). More specifically, the fluid's overall linear and angular momenta remain null over time. The kinetic energies of the molecular Brownian motions, together with those of molecular rotations and vibrations, sum up to the caloric component of a fluid's internal energy (the Equipartition theorem).
Explanation:
Answer:
Carbonic acid could be formed.
Explanation:
Hello,
Based on her claim, it would be a really useful strategy to prevent global warming, nevertheless, there would be a problem if a increasing amount of carbon dioxide is not buried at the bottom of the ocean yet it flows freely along the sea and probably reacting with the water, causing carbonic acid to be formed and subsequently cutting back the sea's pH (increasing its acidity).
It would be useful, but a constant monitoring of the sea's pH must be needed because this could cause some species to be affected not only by the temperature but for the acid pH as well.
Best regards.
Independent Variable: a variable that you can change in an experiment
Dependent Variable: something that changes as you change the independent variable
control variable: something that is not changed throughout the experiment
<span>My only guess is obtain a metal and heat it in a boiling water bath (of known temperature) this will be your initial temperature. Now obtain a calorimeter cup with water of known temperature as well. Place the metal into the calorimeter cup and record the temperature after 5 minutes. You now have delta T, mass of the metal, and Q. Solve for C.
Hope this helps xox :)</span>