Answer:
In an acid-base equilibrium, acid becomes a conjugate base and base becomes a conjugate acid.
Explanation:
Let's remember the Bronsted-Lowry theory to answer this specific question. According to the theory, acid is a proton donor, while a base is a proton acceptor.
Consider an acid in a form HA (aq) and base in a form of B (aq). Since acid is a proton donor, it will donate its hydrogen ion to the base, B. The resultant products would be
(aq) and
(aq).
Remember that an acid-base reaction is an equilibrium reaction. This means we may also look at this proton transfer reaction from the product side towards the reactants. Summarizing what has been said, we may write the equilibrium as:
⇄ 
Now acid, HA, donates a proton to become a conjugate base. The conjugate base, if we look from the reverse equation side, is actually a base, since it can accept a proton to become HA. Similarly, B accepts a proton to become a conjugate acid. Looking from the reverse reaction, it can now donate a proton, so in reality we can consider it a base.
To summarize, your logic is correct.
Answer:
15. 2.66 moles .
16. 2.09L.
Explanation:
Molarity of a solution is simply defined as the mole of solute per unit litre of the solvent. Mathematically, it is represented as:
Molarity = mole /Volume.
With the above formula, let us answer the questions given above
15. Data obtained from the question include the following:
Volume of solution = 1.4L
Molarity = 1.9M
Mole of solute =.?
Molarity = mole /Volume
1.9 = mole / 1.4
Cross multiply
Mole = 1.9 x 1.4
Mole = 2.66 moles
Therefore, the mole of the solute present in the solution is 2.66 moles.
16. Data obtained from the question include the following:
Mole of solute = 0.46 mole
Molarity = 0.22M
Volume of solvent (water) =.?
Molarity = mole /Volume
0.22 = 0.46/Volume
Cross multiply
0.22 x Volume = 0.46
Divide both side 0.22
Volume = 0.46/0.22
Volume = 2.09L
Therefore, 2.09L of water is required.
Answer:
1.49×10²² atoms of H are contained in the sample
Explanation:
TNT → C₇H₅N₃O₆
1 mol of this has 7 moles of C, 5 moles of H, 3 moles of N and 6 moles of O
Let's determine the mass of TNT.
Molar mass is = 227 g/mol
As 1 mol has (6.02×10²³) NA atoms, how many moles are 8.94×10²¹ atoms.
8.94×10²¹ atoms / NA = 0.0148 moles
So this would be the rule of three to determine the mass of TNT
3 moles of N are in 227 g of compound
0.0148 moles of N are contained in (0.0148 .227) / 3 = 1.12 g
Now we can work with the hydrogen.
227 grams of TNT contain 5 moles of H
1.12 grams of TNT would contain (1.12 .5) / 227 = 0.0247 moles
Finally let's convert this moles to atoms:
0.0247 mol . 6.02×10²³ atoms / 1 mol = 1.49×10²² atoms
Answer: The result is presented in proportion which gives a clearer understanding and accurate result.
Explanation: Percentage change in mass is the proportion of the initial mass of a substance changed after sometime. The results is presented as a percentage making it more accurate and can help to give future reference to weight calculations.
Change is Mass is the mass of a substance left after sometime mostly given in grams. It is not as accurate as percentage change in mass. It is generally better to show results in percentage change in mass as it gives a better understanding of what mass of a substance was lost after a given period or after application of energy like Heat or increased temperature.
V ( HCl ) = 45.00 mL in liters : 45.00 / 1000 => 0.045 L
M ( HCl ) = ?
V ( NaOH ) = 25.00 / 1000 => 0.025 L
M ( NaOH) = 0.2000 M
number of moles NaOH :
n = M x V = 0.2000 x 0.025 => 0.005 moles of NaOH
Mole ratio:
HCl + NaOH = NaCl + H2O
1 mole HCl ---------- 1 mole NaOH
? mole HCl ---------- 0.005 moles NaOH
moles HCl = 0.005 x 1 / 1
= 0.005 moles of HCl :
M ( HCl ) = n / V
M ( HCl ) = 0.005 / 0.045
= 0.1111 M
hope this helps!