Answer:
0.84
Explanation:
m = Massa balok
g = Percepatan gravitasi
= Sudut kemiringan
= Koefisien gesekan statik antara balok dan bidang miring
Gaya balok karena beratnya diberikan oleh

Gaya gesekan diberikan oleh

Kondisi dimana balok mulai bergerak adalah ketika gaya balok akibat beratnya sama dengan gaya gesek pada balok.

Koefisien gesekan statik antara balok dan bidang miring adalah 0.84.
Answer:
1) current = I
2) Resistance = V/I
3) current = 2I
4) resistance = V/2I
5) current = 3I
6) Resistance = V/3I
7) Current = 4I
8) Resistance = V/4I
Explanation:
When one bulb is connected across the battery then let say the current is given as I
Then resistance is given as

When two bulbs are in parallel with the battery then
total current becomes twice of initial current
so we have
current = 2I
Resistance of the circuit is now

When three bulbs are in parallel with the battery then
total current becomes three times of initial current
so we have
current = 3I
Resistance of the circuit is now

When four bulbs are in parallel with the battery then
total current becomes four times of initial current
so we have
current = 4I
Resistance of the circuit is now

I would say the plastic grip because glass, wood, and plastic are all good conductors of electricity
work done=446.9 J . so option (c) is correct.
Explanation:
the formula for work done is given by
W= F d
F= force= mg where m= mass and g= acceleration due to gravity
F= 3.8 (9.8)=37.24 J
so W=37.24 (12)
W=446.9 J
Answer:
The height reached by the material on Earth is 91 km.
Explanation:
Given that,
Mass 
Radius = 1821 km
Height 
Suppose we need to find that how high would this material go on earth if it were ejected with the same speed as on Io?
We need to calculate the acceleration due to gravity on Io
Using formula of gravity

Put the value into the formula


Let v be the speed at which the material is ejected.
We need to calculate the height
Using the formula of height

Using ratio of height of earth and height of Io


Put the value into the formula





Hence, The height reached by the material on Earth is 91 km.