Answer:
<em>12 m/s</em>
Explanation:
<u>Projectile Motion</u>
It's also known as 2D motion because the movement takes place in both axis x and y. The x-axis motion is at a constant speed since in absence of friction, no external force stops or accelerates the object. The y-axis motion is at variable speed, which is changed by the acceleration of gravity that makes the object to reach a maximum height and then go back to ground level.
The maximum horizontal distance reached (also called Range) is given by

Knowing that
, we solve for Vo


Thus, the initial speed of Mike Powell was 12 m/s
Average speed of the runner is the rate at which the runner covers the total distance. Average speed of the runner in the race is given by,
Average speed = 
Where
Total distance = Distance covered by the runner from initial to final position
Total time = time taken by the runner to cover entire distance
Instantaneous speed is the speed of the runner at the particular moment in the given time. Instantaneous speed is given by,
Instantaneous speed = 
x = position of the runner at time t
t = time taken to cover distance x
Hence, Average speed and instantaneous speed are different for a runner running in the race.
Answer:
18.9 <em>N or </em><em>19</em><em> N </em>rounded
Explanation:
m = 0.145 kg
a = 130 m/s^2
F = ma = (0.145 kg)(130 m/s^2) = 18.9 <em>N</em>
Answer:
Elastic Collision
Inelastic Collision
The total kinetic energy is conserved. The total kinetic energy of the bodies at the beginning and the end of the collision is different.
Momentum does not change. Momentum changes.
No conversion of energy takes place. Kinetic energy is changed into other energy such as sound or heat energy.
Highly unlikely in the real world as there is almost always a change in energy. This is the normal form of collision in the real world.
An example of this can be swinging balls or a spacecraft flying near a planet but not getting affected by its gravity in the end.