Answer:
0.0344 moles and 1.93g.
Explanation:
Molarity is defined as the ratio between moles of a solute (In this case, KOH), and the volume. With molarity and volume we can solve the moles of solute. With moles of solute we can find mass of the solute as follows:
<em>Moles KOH:</em>
15.2mL = 0.0152L * (2.26mol / L) = 0.0344moles
<em>Mass KOH:</em>
0.0344 moles * (56.11g/mol) = 1.93g of KOH
Use Planck's equation (E=hv) to solve. where <span>frequency (v) of ultrviolet radiation is 6.8 × 1015 1/s. </span><span>
</span>The variable h is a
constant equal to 6.63 × 10-34 J·s
E= <span>(6.8 × 1015 1/s)x(</span>6.63 × 10-34 J·s)
Answer:
The particle theory is used to explain the properties of solids, liquids and gases. The strength of bonds (attractive forces) between particles is different in all three states.
Explanation:
The problem above can be solved using M1V1=M2V2 where M1 is the concentration of the concentrated, V1 is the volume of the concentrated solution, M2 is the concentration of the Dilute Solution, V2 is the Volume of the dilute solution. Hence,
(3.0 M)(V2)=(250 mL)(1.2M)
V2 (3.0)= 300
V2= 100 mL
Therefore, you need 100 mL of 3.0 M HCl to form a 250 mL of 1.2 M HCl.