Gravitational potential energy = mgh or mass times acceleration due to gravity times the height
Here the mass is 0.25kg, the height is 10m, and gravity is 9.8m/s^2 so...
GPE = (0.25)(10)(9.8)
GPE = 24.5 J
Answer:
2 x 10^20 N
Explanation:
Me = 5.98 x 10^24 kg
Mm = 7.36 x 10^22 kg
r = 3.82 x 10^5 km = 3.82 x 10^8 m
The gravitational force between earth and moon is
F = G Me x Mm / r^2
F = (6.67 x 10^-11 x 5.98 x 10^24 x 7.36 x 10^22) / (3.82 x 10^8 x 3.82 x 10^8)
F = 2 x 10^20 N
<span>As per the second law of thermodynamics, when the energy gets converted from one form to another in a physical or chemical change, then the energy which we get as result of change is of lower quality or usability of such energy is less.</span>
Answer:
the best graph to find the acceleration is v-t since calculating the slope averages the different experimental errors.
Explanation:
The different graphics depending on time give various information, let's examine what we can get from some
Graph of x -t. from this graph we can obtain the speed through the slope, but the acceleration is not directly obtainable
v-t chart. We can get the acceleration not through the slope and the distance traveled by the area under the curve. Obtaining acceleration is very accurate since it is an average that avoids possible errors in measurements. This is the best graph to find the acceleration
Graph of a-t In this graph the acceleration is a point on the Y axis, it gives some errors because it depends strongly on the possible experimental errors.
In conclusion, the best graph to find the acceleration is v-t since calculating the slope averages the different experimental errors.