Answer:
Chlorine is a very reactive non metals because this element don't form any known chemical compound.
Explanation:
Chlorine atoms have a lot of valance electrons without being complete on its own, so it has a greater need to seek it's conjugates. That's called electronegativity. Halogens are highly reactive because of their electronegativity.
Answer: A. Pollutants
Explanation:
"A pollutant is a substance or energy introduced into the environment that has undesired effects, or adversely affects the usefulness of a resource. ..." - Wikipedia
Answer:
B.Lone pair in pyrrolidine ring is localized and, therefore, is expected to be more reactive.
Explanation:
There are two nitrogen atoms bearing lone pairs of electrons in the structure of nicotine as shown in the image attached.
One nitrogen atom is found in the pyrrolidine ring. The lone pair on this nitrogen atom is localized hence it is more reactive than the lone pair of electrons found on the nitrogen atom in the pyridine ring which is delocalized a shown in the image attached to this answer.
Answer:
The correct answer is option D.
Explanation:
Rate of the reaction is a change in the concentration of any one of the reactant or product per unit time.

Rate of the reaction:
![R=-\frac{1}{1}\times \frac{d[NO_2]}{dt}=-\frac{1}{1}\times \frac{d[CO]}{dt}](https://tex.z-dn.net/?f=R%3D-%5Cfrac%7B1%7D%7B1%7D%5Ctimes%20%5Cfrac%7Bd%5BNO_2%5D%7D%7Bdt%7D%3D-%5Cfrac%7B1%7D%7B1%7D%5Ctimes%20%5Cfrac%7Bd%5BCO%5D%7D%7Bdt%7D)
Rate of decrease in nitrogen dioxide concentration is equal to the rate of decrease in carbon monoxide.
Given rate expression of the reaction:
![R = k[NO2]^2[CO]](https://tex.z-dn.net/?f=R%20%3D%20k%5BNO2%5D%5E2%5BCO%5D)
Rate of the reaction on doubling concentration of nitrogen dioxide and carbon monoxide : R'
![R'=k(2\times [NO_2])^2(2\times [CO])=8\times k[NO2]^2[CO]=8R](https://tex.z-dn.net/?f=R%27%3Dk%282%5Ctimes%20%5BNO_2%5D%29%5E2%282%5Ctimes%20%5BCO%5D%29%3D8%5Ctimes%20k%5BNO2%5D%5E2%5BCO%5D%3D8R)
Doubling the concentrations of nitrogen dioxide and carbon monoxide simultaneously will increase the rate of the reaction by a factor of eight.
Hence, none of the given statements are true.