Answer:

Explanation:
Group 4A contains a total of 4 electrons for each atom in their valence shell. Filling the orbital diagram, let's say, for carbon, notice that when we start with period 2, we have two elements in the s-block, that is, lithium and beryllium. They correspond to the two s electrons that belong to the valence shell of carbon.
Moving on, we have boron and carbon, the remaining 2 electrons. Now, starting with boron, we're in the p-block.
That said, looking at the second period, the electron configuration for the valence shell of a group 4A element would be:

Answer:
2.25 g
Explanation:
The mass of the solid X must be the total mass (beaker + solid X) less than the mass of the beaker. Then:
mass of the solid X = 34.40 - 32.15
mass of the solid X = 2.25 g
The difference of 0.25 g must occur for several problems: an incorrect weight in the balance, the configuration of the balance, the solid can be hydrophilic and absorbs water, and others.
<span>Two scientists wrote a paper detailing their research and conclusions and submitted it to a scientific journal. Several months later, they received the paper back from the publisher with many comments attached from several fellow scientists. It is either that they revise their study or replicate the study. Most scientists would revisit their work and the findings they had from their research. Most probable if they were successful and the comments of the publisher and the co-scientists were positive they could replicate the study to validate its accountability.<span>
</span></span>
Answer:
P=19.32g/cm³
Explanation:
m=9.66g
v=0.5cm³
P=mass/volume (density formula)
=9.66/0.5
=19.32g/cm³