Answer:
7.7 km 26°
Explanation:
The total x component is:
x = 2.5 cos(35°) + 5.2 cos(22°) = 6.87
The total y component is:
y = 2.5 sin(35°) + 5.2 sin(22°) = 3.38
The magnitude is:
d = √(x² + y²)
d = 7.7 km
The direction is:
θ = atan(y/x)
θ = 26°
Pulse type of modulation is applied to radio-controlled toys, therefore the correct answer is option D.
<h3>What is the frequency?</h3>
It can be defined as the number of cycles completed per second. It is represented in hertz and inversely proportional to the wavelength.
Toys controlled by remote control operate by emitting infrared radiation. These infrared rays have a frequency of 34–48 kilo Hertz.
Different types of modulations, such as frequency and amplitude modulation for transmitting and receiving video and music, are employed for other reasons.
Thus, the Pulse-type of modulation is applied to radio-controlled toys, therefore the correct answer is option D.
Learn more about frequency from here
brainly.com/question/14316711
#SPJ1
Answer:
frequency = 5.52 * 10² Hz
Explanation:
the equation that relates velocity, frequency and wavelength is:
velocity = frequency * wavelength
We are given that:
velocity = 331 m/sec
wavelength = 0.6 m
Substitute with the givens in the equation to get the frequency as follows:
velocity = frequency * wavelength
331 = frequency * 0.6
frequency = 331 / 0.6
frequency = 5.52 * 10² Hz
Hope this helps :)
Answer:
the direction of rate of change of the momentum is against the motion of the body, that is, downward.
The applied force is also against the direction of motion of the body, downward.
Explanation:
The change in the momentum of a body, if the mass of the body is constant, is given by the following formula:

p: momentum
m: mass
: change in the velocity
The sign of the change in the velocity determines the direction of rate of change. Then you have:

v2: final velocity = 35m/s
v1: initial velocity = 40m/s

Hence, the direction of rate of change of the momentum is against the motion of the body, that is, downward.
The applied force is also against the direction of motion of the body, downward.