1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mina [271]
3 years ago
8

Mt. Asama, Japan, is an active volcano. In 2009, an eruption threw solid volcanic rocks that landed 1 km horizontally from the c

rater. If the volcanic rocks were launched at an angle of 40° with respect to the horizontal and landed 900 m below the crater, (a) what would be their initial velocity and (b) what is their time of flight?
Physics
1 answer:
Nata [24]3 years ago
7 0

Answer:

a) 69.3 m/s

b) 18.84 s

Explanation:

Let the initial velocity = u

The vertical and horizontal components of the velocity is given by uᵧ and uₓ respectively

uᵧ = u sin 40° = 0.6428 u

uₓ = u cos 40° = 0.766 u

We're given that the horizontal distance travelled by the projectile rock (Range) = 1 km = 1000 m

The range of a projectile motion is given as

R = uₓt

where t = total time of flight

1000 = 0.766 ut

ut = 1305.5

The vertical distance travelled by the projectile rocks,

y = uᵧ t - (1/2)gt²

y = - 900 m (900 m below the crater's level)

-900 = 0.6428 ut - 4.9t²

Recall, ut = 1305.5

-900 = 0.6428(1305.5) - 4.9 t²

4.9t² = 839.1754 + 900

4.9t² = 1739.1754

t = 18.84 s

Recall again, ut = 1305.5

u = 1305.5/18.84 = 69.3 m/s

You might be interested in
What makes a substance, such as<br> aluminum, a good conductor?
spin [16.1K]

Answer:

For a material to be a good conductor, the electricity passed through it must be able to move the electrons; the more free electrons in a metal, the greater its conductivity.

8 0
3 years ago
How much water will flow in 30 secs through 200 mm of capillary tube of 1.50 mm in diameter, if the pressure difference across t
Paladinen [302]

The water outflow in 30 secs through 200 mm of the capillary tube is mathematically given as

Qo=1.6 \times 10^{2} \mathrm{~mL}

<h3>What is the water outflow in 30 secs through 200 mm of the capillary tube?</h3>

\begin{aligned}\Delta P &=6660 \mathrm{~m} / \mathrm{m}^{2} \\\mu &=8.01 \times 10^{-4} \text { Pas } \\t &=30 \mathrm{~s} \\L &=200 \mathrm{~mm}=200 \times 10^{-3} \mathrm{~m} \\D &=1.5 \mathrm{~mm}=1.5 \times 10^{-3} \mathrm{~m} \Rightarrow \gamma=\frac{1.5 \times 10^{-3}}{2} \mathrm{~m}\end{aligned}

Generally, the equation for Rate of flow of Liquid is  mathematically given as

\\$$Q=\frac{\pi r^{4} \times \Delta P}{8 \mu L}

$$

Where dP is pressure difference r is the radius

\mu is the viscosity of water

L is the length of the pipe

Q=\frac{\pi \times\left(\frac{1.5 \times 10^{-3}}{2}\right)^{4} \times 6660}{8 \times 8.01 \times 10^{-4} \times 200 \times 10^{-3}}

Q=5.2 \mathrm{~mL} / \mathrm{s}

In $30s the quantity that flows out of the tube

&Qo=5.2 \times 30 \\&Qo=1.6 \times 10^{2} \mathrm{~mL}

In conclusion, the quantity that flows out of the tube

Qo=1.6 \times 10^{2} \mathrm{~mL}

Read more about the flows rate

brainly.com/question/27880305

#SPJ1

5 0
2 years ago
if you have a kinetic energy of 1470 J, and you are 60kg mass and 0 m above the ground, what is you velocity?
laiz [17]

Answer:

The 39.

Explanation:

8 0
2 years ago
Read 2 more answers
describe why people are better off not consuming an additional good or service if the marginal cost is greater than the marginal
yulyashka [42]
I hosestly don’t know sorry need the points
3 0
3 years ago
Two spectators at a soccer game in Montjuic Stadium see, and a moment later hear, the ball being kicked on the playing field. Th
Akimi4 [234]

Answer:

a) The distance of spectator A to the player is 79.2 m

b) The distance of spectator B to the player is 43.9 m

c) The distance between the two spectators is 90.6 m

Explanation:

a) Knowing the time it takes the sound to reach both spectators, we can calculate their position relative to the player, using this equation:

x = v * t

where:

x = position of the spectators

v = speed of sound

t = time

Then, the position for spectator A relative to the player is:

x = 343 m/s * 0.231 s = 79.2 m

b)For spectator B:

x = 343 m/s * 0.128 s

x = 43.9 m

The distance of spectator A and B to the player is 79.2 m and 43.9 m respectively.

c) To calculate the distance between the spectators, please see the attached figure. Notice that the distance between the spectators is the hypotenuse of the triangle formed by the sightline of both. We already know the longitude of the two sides. Then, using Pythagoras theorem:

(Distance AB)² = A² + B²

(Distance AB)² = (79.2 m)² + (43.9 m)²

Distance AB = 90. 6 m

6 0
3 years ago
Other questions:
  • In a local diner, a customer slides an empty coffee cup down the counter for a refill. The cup slides off the counter and strike
    12·1 answer
  • What healthy snack can provide protein after physical activity?
    5·1 answer
  • A firm wants to determine the amount of frictional torque in their current line of grindstones, so they can redesign them to be
    7·1 answer
  • A man is traveling on a bicycle at 14 m/s along a straight road that runs parallel to some railroad tracks. He hears the whistle
    15·1 answer
  • What outside force prevents the planets from moving in a straight line into space
    15·2 answers
  • One person is in a pool and is diving to a depth of 2.3m, and another person is diving to a depth of 3m. What pressure does each
    14·1 answer
  • What made the Fertile Crescent a good place for growing crops
    5·2 answers
  • Write down any 5 example of conservation of momentum?​
    15·1 answer
  • A Force is applied onto a mass causing it to accelerate. If the same Force was applied to a SMALLER mass, what would happen to t
    12·2 answers
  • Question 3 (10 points)
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!