Answer is: mass of <span>potassium bromide is 4.71 grams.
V(KBr) = 25.4 mL </span>÷ 1000 mL/L = 0.0254 L, volume of solution.
c(KBr) = 1.56 mol/L.
n(KBr) = c(KBr) · V(KBr).
n(KBr) = 1.56 mol/L 0.054 L.
n(KBr) = 0.0396 mol, amount of substance.
m(KBr) = n(KBr) · M(KBr).
m(KBr) = 0.0396 mol · 119 g/mol.
m(KBr) = 4.71 g.
M - molar mass.
Yes, Bobby is correct
Explanation:
Anomalously high boiling point of water is as a result of the intermolecular forces between the molecules of water.
The intermolecular forces found in water are the very strong hydrogen bonds. The bulk of the physical properties of matter are due to the intermolecular forces that they possess.
- Hydrogen bonds are stronger than van der waals forces and they are more effective in binding molecules together into larger units.
- Substances whose molecules join via hydrogen bonds have higher boiling points i.e lower volatility than those with van der waals forces.
- Hydrogen bond is actually an electrostatic attraction between hydrogen atom of none molecule and the electronegative atom(O or N or F) of a neighboring molecule.
Learn more:
Hydrogen bonds brainly.com/question/10602513
#learnwithBrainly
Answer:
603000 J
Explanation:
The following data were obtained from the question:
Energy required (Q) =...?
Mass (M) = 10000 g
Specific heat capacity (C) = 2.01 J/g°C
Overheating temperature (T2) = 121°C
Working temperature (T1) = 91°C
Change in temperature (ΔT) =.?
Change in temperature (ΔT) =T2 – T1
Change in temperature (ΔT) = 121 – 91
Change in temperature (ΔT) = 30°C
Finally, we shall determine the energe required to overheat the car as follow:
Q = MCΔT
Q = 10000 × 2.01 × 30
Q = 603000 J
Therefore, 603000 J of energy is required to overheat the car.
One atom is a metal and one is a nonmetal.
One atom has high electronegativity value, while the other value is really low