The momentum of the ball when it hits the ground is 4.89 kg.m/s.
The given parameters;
- <em>mass of the baseball, m = 0.145 kg</em>
- <em>height of fall of the ball, h = 58 m</em>
The final velocity of the ball when it hits the ground is calculated as follows;

The momentum of the ball when it hits the ground is calculated as follows;
P = mv
P = 0.145 x 33.72
P = 4.89 kg.m/s
Thus, the momentum of the ball when it hits the ground is 4.89 kg.m/s.
Learn more here:brainly.com/question/22035809
Answer:
Explanation:
The energy and the frequency of electromagnetic radiation inversely proportional to the frequency of radiation.
So, as the wavelength increases, the energy and the frequency decreases.
<u>Answer:</u>
<em>1. A NaCl solution with a concentration of 50g/100mL of water at 40°C:</em> The NaCl solution with a given concentration is saturated at this temperature .As the temperature increases the solution will more dissolves.
<em>2. A sugar solution with a concentration of 200g/100mL of water at 40°C: </em>The sugar solution with a given concentration is saturated at this temperature. As the temperature increases the solution will more dissolves.
<em>3. A sugar solution with a concentration of 240g/100mL of water at 40°C:</em> The sugar solution with a given concentration is saturated at given temperature.
Answer:
nine times as much.
Explanation:
K.E of A = 9 times K.E of B