The average current is 0.10 A.
<h3>Current </h3>
Charge moving through a location on a circuit at a constant rate is called current. When numerous coulombs of charge pass over a wire's cross section in a circuit, it produces a large current. It is not necessary for a wire to be moving at a fast speed in order to have a high current if the charge carriers are tightly packed into the wire. To put it another way, many charge carriers traveling through the cross section is sufficient; they do not need to travel a great distance in a single instant. The amount of charges that flow through a cross section of wire on a circuit, as opposed to how far they travel in a second, is what determines current.
A charge of 12 c passes through an electroplating apparatus in 2. 0 min. what is the average current?
Learn more about current here:
brainly.com/question/2264542
#SPJ4
Weight = (mass) x (gravity)
70 N = (mass) x (9.8 m/s²)
Divide each side by (9.8 m/s²) , and you have
mass = 70 N / 9.8 m/s² = 7.14 kg.
___________________________
Mass on the moon:
Mass doesn't change. It's a number that belongs to the bowling ball,
no matter where the ball goes. If the mass of the bowling ball is 7.14 kg
anywhere, then it's 7.14 kg everywhere ... on Earth, on the moon, on Mars, rolling around in the trunk of my car, or floating in intergalactic space.
However, WEIGHT depends on the gravity wherever the ball happens to be
at the moment.
The acceleration of gravity on the moon is 1.622 m/s².
So the WEIGHT of the ball on the moon is
(7.14 kg) x (1.622 m/s²) = 11.58 Newtons
That's only about 16% of its weight on Earth.
Answer:
The equations of kinematics is applied for the motion with constant acceleration (including zero), but the condition is that the acceleration should be in the direction of the motion (positive or negative).
In circular motion, the acceleration is radial (centripetal), which means that the acceleration is always perpendicular to the motion of the object, therefore the equations of kinematics cannot be applied.
The Voyager and Pioneer flybys of the 1970s and 1980s provided rough sketches of Saturn’s moons. But during its many years in Saturn orbit, Cassini discovered previously unknown moons, solved mysteries about known ones, studied their interactions with the rings and revealed how sharply different the moons are from one another.
Answer:
a) d₁ = 247.8 μm
d₂ = 205.3 μm
b) d₂ = 20.53 x 10⁻⁵ m = 205.3 μm
Explanation:
a)
The formula for Michelson Interferometer is derived to be:
d = mλ/2
where,
d = distance moved
m = no. of fringes
λ = wavelength of light
For JAN, we have following data
d = d₁
m = 818
λ = 606 nm = 606 x 10⁻⁹ m
Therefore,
d₁ = (818)(606 x 10⁻⁹ m)/2
<u>d₁ = 24.78 x 10⁻⁵ m = 247.8 μm</u>
For LINDA, we have following data
d = d₂
m = 818
λ = 502 nm = 502 x 10⁻⁹ m
Therefore,
d₂ = (818)(502 x 10⁻⁹ m)/2
<u>d₂ = 20.53 x 10⁻⁵ m = 205.3 μm</u>
b)
The resultant displacement can be found out from the difference between both displacement. And the direction of resultant displacement will be the same as the direction of greater displacement. Therefore,
Resultant Displacement = Δd = d₁ - d₂
Δd = 247.8 μm - 205.3 μm
<u>Δd = 42.5 μm (in the direction of JAN)</u>