Roughly 1609 meters in one mile
- The wavelength of the red light in "nanometer" is 7×

- Wavelength is given as : 7×
meter
- 1 nanometer = (
meter)
- Let X= value of the wavelength in nanometer.
1 nanometer =
meter
X nanometer = 7×
meter
- <em>If we Cross multiply</em>
X nanometer = (
)
X= 7×
nanometer
Therefore, the wavelength in "nanometer" is 7×
Learn more at :brainly.com/question/12924624?referrer=searchResults
Answer:
<h2>17.1 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question
3800 g = 3.8 kg
We have
force = 3.8 × 4.5
We have the final answer as
<h3>17.1 N</h3>
Hope this helps you
Answer:
The electromagnetic force
Explanation:
The electromagnetic force is one of the four fundamental forces of nature. Namely, they are:
- Electromagnetic force: it is the force exerted between electrically charged particles (and between magnetic fields). The force can be either attractive (if the two charges have opposite signs) or repulsive (if the two charges have same sign), and it acts over an infinite range.
- Gravitational force: it is the force exerted between objects with mass. It is always attractive, and it also has an infinite range of action. It is the weakest of the four fundamental forces.
- Strong nuclear force: it is the force that acts between protons and neutrons inside the nucleus, and it is responsible for keeping the nucleus together and preventing it from breaking apart (due to the electrostatic repulsion between protons)
- Weak nuclear force: it is the force responsible for certains nuclear decays, such as the beta decay, in which a neutron turns into a proton, emitting an electron and an antineutrino.
Answer:
The answer is B.
Explanation:
Given that the <em>current </em>(Ampere) in a series circuit is same so we can ignore it. We can assume that the total voltage is 60V and all the 3 resistance are different, 20Ω, 40Ω and 60Ω. So first, we have to find the total resistance by adding :
Total resistance = 20Ω + 40Ω + 60Ω
= 120Ω
Next, we have to find out that 1Ω is equal to how many voltage by dividing :
120Ω = 60V
1Ω = 60V ÷ 120
1Ω = 0.5V
Lastly, we have to calculate the voltage at R1 so we have to multiply by 20 (R1) :
1Ω = 0.5V
20Ω = 0.5V × 20
20Ω = 10V