We Know, F = m*a
F = 2200 * 3.4
F = 7480 Kg m/s²
So, your final answer is 7480
Answer:

Explanation:
Let's use the equation that relate the temperatures and volumes of an adiabatic process in a ideal gas.
.
Now, let's use the ideal gas equation to the initial and the final state:

Let's recall that the term nR is a constant. That is why we can match these equations.
We can find a relation between the volumes of the initial and the final state.

Combining this equation with the first equation we have:


Now, we just need to solve this equation for T₂.

Let's assume the initial temperature and pressure as 25 °C = 298 K and 1 atm = 1.01 * 10⁵ Pa, in a normal conditions.
Here,
Finally, T2 will be:

Answer:
According to Newton's 2nd law
The force acting on a body produces acceleration in its direction which is directly propotional to the force but inversly propotinal to the mass of tbe body.
Explanation:
a = F/m
F = ma
Where( F) is force (m) is mass and (a) is acceleration.
Answer:
C
Explanation:
Answer A: A surface wave is a wave that travels along the surface of a medium.
Answer B, C: Electromagnetic waves are waves that have no medium to travel whereas mechanical waves need a medium for its transmission.
Answer D: The sentence in the answer D does not fit to the blank in the definition ( of the question )
......
Hope this answer can help you.