Answer:
The answer is "29.081"
Explanation:
when the empty 2.00 L container of 1000 kg, a sample of HI (9.30 x 10-3 mol) has also been placed.




Its density of I 2 was 6.29x10-4 M if the balance had been obtained, then we have to get the intensity of equilibrium then:

It is defined that:


Now, we calculate the position:
For the reaction
, you can calculate the value of Kc at 1000 K.
data expression for Kc


calculating the reverse reaction



Answer:
What can liquids do that solids cannot?Liquids will flow and fill up any shape of container. Solids like to hold their shape. In the same way that a large solid holds its shape, the atoms inside of a solid are not allowed to move around too much. Atoms and molecules in liquids and gases are bouncing and floating around, free to move where they want.
What can gases do that solids cannot?The atoms and molecules in gases are much more spread out than in solids or liquids. They vibrate and move freely at high speeds. A gas will fill any container, but if the container is not sealed, the gas will escape. Gas can be compressed much more easily than a liquid or solid.
I hope this helps
Answer:
um pretty sure this is it
Explanation:
The fission process also releases extra neutrons, which can then split additional atoms, resulting in a chain reaction that releases a lot of energy.
Heat capacity of aluminium = 0.900 J/g°C
While heat capacity of water = 4.186 J/g°C
Heat = heat gained by water + heat gained by aluminium
Heat gained by water = 100 × 4.186 × 30.5
= 12767.3 Joules
Heat gained by aluminium = 15 × 0.9 × 30.5
= 411.75 Joules
Heat required = 13179.05 Joules or 13.179 kJoules
The symbol for the hydroxide ion is OH-