Answer:
same 0.81m
Explanation:
in this problem if we assume there no resistance of any sort. and we apply the energy conservation
change in Potential energy = change in kinetic energy
mgh = 0.5mv^2
gh = 0.5v^2
the above relation suggests that the speed at the bottom is only depending on the height it is released from not on the shape, mass or radius.
so at the bottom
put h = 0.81m
9.81 * 0.81 * 2 = v^2
v=3.99 m/s
both CYLINDER and SPHERE will have same velocity at the bottom if released from the same height irrespective of shape and size
Light will travel more slowly in a material with a higher index of refraction
answer:
yes
explanation:
At a separation of the surface of Earth (r=6400km) gravity wants pull the test mass closer and closer. ... So the work done by gravity is NEGATIVE. The gravitational potential energy is negative because us trying to do the opposite of what gravity wants needs positive energy.
Answer:
impulse = 8820 kg·
or 8820 N·s
Explanation:
Impulse J is equal to the average force
multiplied by the elapsed time Δt or in equation form, J =
Δt
As long as your force of 450 N is constant then that value is your average force
and your elapsed time is 19.4 seconds.
Multiply these values.
You will get an impulse of 8820 kg·
or 8820 N·s.
Answer:
160.75 N
Explanation:
The downward velocity has no effect on the force situation, it is only changes in velocity (plus, of course, gravity, which is always there) that require a force. At constant velocity, the bottom spring s_3 is supporting its mass m_3 to balance gravity.
As the elevator slows, though, it also ends up slowing down the spring arrangement, too. However, because the stretching takes time, it means that some damped harmonic motion will be set up in the spring chain.
When the motion has finally damped out, the net force the bottom spring s3 exerts on m3 has two components--that of gravity and of the deceleration of the elevator:
F_3net = m3 * (g + a) = 10.5×(9.81+5.5)= 10.5×15.31= 160.75 N