1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
luda_lava [24]
3 years ago
12

7. The energy source used to produce most of the electrical energy in the United States is ____________________.

Physics
2 answers:
Tamiku [17]3 years ago
5 0

Answer:

Most of the US electric energy is produced with the help of coal, natural gas and nuclear energy.

Explanation:

The blades of the turbine which are connected to the electric generator are moved with the help of energy sources.

The heat which is produced with the help of coal, natural gas and the nuclear energy will help in producing steam and this steam will move the blades of turbines and by this phenomena the electrical energy is produced.

The above mentioned sources such as coal, natural gas and the nuclear energy are mostly used in US to produce electric energy.

Fudgin [204]3 years ago
4 0

Fossil fuels like coal, natural gas and oil.

Hopes this helps!

You might be interested in
A mass of M-kg rests on a frictionless ramp inclined at 30°. A string with a linear mass density of μ=0.025" kg/m" is attached t
I am Lyosha [343]

Answer:

44.3 m/s

Explanation:

a) Draw a free body diagram of the mass M.  There are three forces:

Weight force mg pulling down,

Normal force N pushing perpendicular to the ramp,

and tension force T pulling parallel up the ramp.

Sum of forces in the parallel direction:

∑F = ma

T − Mg sin 30° = 0

T = Mg sin 30°

T = Mg / 2

Draw a free body diagram of the hanging mass m.  There are two forces:

Weight force mg pulling down,

and tension force T pulling up.

Sum of forces in the vertical direction:

∑F = ma

T − mg = 0

T = mg

Substitute:

mg = Mg / 2

m = M / 2

M = 2m

b) Velocity of a standing wave in a string is:

v = √(T / μ)

T = mg, and m = 5 kg, so T = (5 kg) (9.8 m/s²) = 49 N.  Therefore:

v = √(49 N / 0.025 kg/m)

v = 44.3 m/s

7 0
3 years ago
A physics student swings a pail of water in a vertical circle 1.0 m in radius at a constant speed. If the water is NOT to spill
love history [14]

Answer:

(A) 3.1 m/s

(B) 2.0 s

Explanation:

At the minimum speed, the force of gravity equals the centripetal force.

mg = m v² / r

v = √(gr)

v = √(9.8 m/s² × 1.0 m)

v = 3.1 m/s

The time is the circumference divided by the speed.

t = (2π × 1.0 m) / (3.1 m/s)

t = 2.0 s

7 0
3 years ago
What figure represents a longitudinal figure
OlgaM077 [116]

Answer:

The wavelength can always be determined by measuring the distance between any two corresponding points on adjacent waves. In the case of a longitudinal wave, a wavelength measurement is made by measuring the distance from a compression to the next compression or from a rarefaction to the next rarefaction.

Explanation:

3 0
3 years ago
Assume the motions and currents mentioned are along the x axis and fields are in the y direction. (a) does an electric field exe
matrenka [14]
<span> (a) does an electric field exert a force on a stationary charged object? 
Yes. The force exerted by an electric field of intensity E on an object with charge q is
</span>F=qE
<span>As we can see, it doesn't depend on the speed of the object, so this force acts also when the object is stationary.

</span><span>(b) does a magnetic field do so?
No. In fact, the magnetic force exerted by a magnetic field of intensity B on an object with  charge q and speed v is
</span>F=qvB \sin \theta
where \theta is the angle between the direction of v and B.
As we can see, the value of the force F depends on the value of the speed v: if the object is stationary, then v=0, and so the force is zero as well.

<span>(c) does an electric field exert a force on a moving charged object? 
Yes, The intensity of the electric force is still
</span>F=qE
<span>as stated in point (a), and since it does not depend on the speed of the charge, the electric force is still present.

</span><span>(d) does a magnetic field do so?
</span>Yes. As we said in point b, the magnetic force is
F=qvB \sin \theta
And now the object is moving with a certain speed v, so the magnetic force F this time is different from zero.

<span>(e) does an electric field exert a force on a straight current-carrying wire?
Yes. A current in a wire consists of many charges traveling through the wire, and since the electric field always exerts a force on a charge, then the electric field exerts a force on the charges traveling through the wire.

</span><span>(f) does a magnetic field do so? 
Yes. The current in the wire consists of charges that are moving with a certain speed v, and we said that a magnetic field always exerts a force on a moving charge, so the magnetic field is exerting a magnetic force on the charges that are traveling through the wire.

</span><span>(g) does an electric field exert a force on a beam of moving electrons?
Yes. Electrons have an electric charge, and we said that the force exerted by an electric field is
</span>F=qE
<span>So, an electric field always exerts a force on an electric charge, therefore on an electron beam as well.

</span><span>(h) does a magnetic field do so?
Yes, because the electrons in the beam are moving with a certain speed v, so the magnetic force
</span>F=qvB \sin \theta
<span>is different from zero because v is different from zero.</span>
6 0
3 years ago
Explain why a Merry-Go-Round and a Ferris Wheel have a constant acceleration when they are moving.
luda_lava [24]

Explanation:What is centripetal acceleration?

Can an object accelerate if it's moving with constant speed? Yup! Many people find this counter-intuitive at first because they forget that changes in the direction of motion of an object—even if the object is maintaining a constant speed—still count as acceleration.

Acceleration is a change in velocity, either in its magnitude—i.e., speed—or in its direction, or both. In uniform circular motion, the direction of the velocity changes constantly, so there is always an associated acceleration, even though the speed might be constant. You experience this acceleration yourself when you turn a corner in your car—if you hold the wheel steady during a turn and move at constant speed, you are in uniform circular motion. What you notice is a sideways acceleration because you and the car are changing direction. The sharper the curve and the greater your speed, the more noticeable this acceleration will become. In this section we'll examine the direction and magnitude of that acceleration.

The figure below shows an object moving in a circular path at constant speed. The direction of the instantaneous velocity is shown at two points along the path. Acceleration is in the direction of the change in velocity, which points directly toward the center of rotation—the center of the circular path. This direction is shown with the vector diagram in the figure. We call the acceleration of an object moving in uniform circular motion—resulting from a net external force—the centripetal acceleration

a

c

a

c

​

a, start subscript, c, end subscript; centripetal means “toward the center” or “center seeking”.

5 0
3 years ago
Other questions:
  • What are the physics
    8·1 answer
  • A white dwarf can dramatically increase in brightness only if it
    15·1 answer
  • Which is a product of photosynthesis?
    8·1 answer
  • HELP
    5·2 answers
  • Lightning results from ________.
    15·1 answer
  • During a drive by golfer Ai Miyazato, the angular velocity of her club is zero at the top of the backswing and 30 rad/s at the b
    5·1 answer
  • Ishani and John now try a problem involving a charging capacitor. An uncharged capacitor with C = 6.81 μF and a resistor with R
    11·1 answer
  • Answer please 98 points also brainliest
    12·2 answers
  • The electric current is a
    7·1 answer
  • Describe how work done is related to a change in volume of a fluid. 100 points
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!