Answer:
The angle of launch of the rubber band affects the initial velocity. The more the rubber band is stretched the more force it applies to return to equilibrium and the more kinetic energy that results in.
Btu/(lb-°F) J/(g-°C i mean this is the correct answer
Answer:
1.24 x 10 to the 5 ev = 124,000 ev its B
Explanation:
E = hc/lambda = 1.24 ev-micrometer/1.0x10 to the -5 micrometers = 1.24 x 10 to the 5 ev = 124,000 ev
h = Planck's constant = 6.626 × 10 to the -34 joule·s
c = speed of light = 2.998 × 10 to the 8 m/s
lambda is the given wavelength
E is the desired photon energy
Answer:
n the case of linear motion, the change occurs in the magnitude of the velocity, the direction remaining constant.
In the case of circular motion, the magnitude of the velocity remains constant, the change in its direction occurring.
Explanation:
Velocity is a vector therefore it has magnitude and direction, a change in either of the two is the consequence of an acceleration on the system.
In the case of linear motion, the change occurs in the magnitude of the velocity, the direction remaining constant.
= (v₂-v₁)/Δt
In the case of circular motion, the magnitude of the velocity remains constant, the change in its direction occurring.
= v2/R
In the general case, both the module and the address change
a = Ra ( a_{t}^2 + a_{c}^2)