Answer:
B. changing by a constant amount each second
Explanation:
thats my answer
Answer: Option (b) is the correct answer.
Explanation:
Since, there is a negative charge present on the ball and a positive charge present on the rod. So, when the negatively charged metal ball will come in contact with the rod then positive charges from rod get conducted towards the metal ball.
Hence, the rod gets neutralized. But towards the metal ball there is a continuous supply of negative charges. Therefore, after the neutralization of positive charge from the rod there will be flow of negative charges from the metal ball towards the rod.
Thus, we can conclude that negative charge spread evenly on both ends.
Failed experiments, uncontrolled variables, invalid data, and generalized human error
The center-seeking change in velocity of an object moving in a circle is the centripetal acceleration.
So, by Newton's laws, we know that an object moving with a given velocity will remain in constant motion with a constant velocity until we apply an acceleration.
So we define acceleration as the rate of change of the velocity, also remember that velocity is a vector (has magnitude and direction), so, if there is a change the direction of the velocity, we have an acceleration that causes that.
In circular motion, the velocity vector is always perpendicular to the radius of the circle, and it can only be possible if the velocity direction is changing constantly. This will happen because of something called centripetal acceleration.
This acceleration points radially inwards (to the center of the circle) so is also perpendicular to the velocity of the moving object, and this is what causes the constant change in the direction of the velocity of the moving object.
Just to give an example, if you have a string with a mass on one end, and with your hand, you rotate the mass (from the string), the tension of the string would be the centripetal acceleration.
If you want to learn more about circular motion, you can read:
brainly.com/question/2285236