The first thing you should know in this case is the following definition:
PV = nRT
Then, as the temperature is constant, then:
PV = k
Then, we have two states:
P1V1 = k
P2V2 = k
We can then equalize both equations:
P1V1 = P2V2
Substituting the values:
(1.25) * (101) = (2.25) * (P2)
Clearing P2:
P2 = ((1.25) * (101)) /(2.25)=56.11Kpa
answer:
the new pressure inside the jar is 56.11Kpa
The answer is wind forces and Earth’s rotation
Answer:
68.5 meters
Explanation:
Given:
v₀ = 0 m/s
a = 9.8 m/s²
t = 3.74 s
Find: Δy
Δy = v₀ t + ½ at²
Δy = (0) (3.74) + ½ (9.8) (3.74)²
Δy = 68.5
The egg fell 68.5 meters.
Answer: (Sorry, but I don't know how to calculate mass)
1. 15 N
2. 0.4921
(feet per second squared)
4. 150 N
5. 8.202 feet per second squared
Answer:
Neither.
Explanation:
When an electron is released from rest, in an uniform electric field, it will accelerate moving in a direction opposite to the field (as the field has the direction that it would take a positive test charge, and the electron carries a negative charge).
It will move towards a point with a higher potential, so its kinetic energy will increase, while its potential energy will decrease:
⇒ ΔK + ΔU = 0 ⇒ ΔK = -ΔU = - (-e*ΔV)
As ΔV>0, we conclude that the electric potential energy decreases while the kinetic energy increases in the same proportion, in order to energy be conserved, in absence of non-conservative forces.