Tin is an element called Stannum and has the symbol Sn. Molar mass is the mass of 1 mol of a compound, 1 mol of any substance is made of 6.022 x 10²³ units, these units could be atoms making up an element or molecules making up a compound.
While the number of atoms making up 1 mol is the same for any element, the weight of 1 mol of substance varies from one another.
In tin(Sn) molar mass - 118.71 g/mol
In 118.71 g - there's 1 mol of tin
therefore in 37.6 g of tin - 1 x 37.6 / 118.71 = 0.31 mol
In 37.6 g of tin, there's 0.31 mol
Explanation:
the molar mass of a compound can be caucaleted by adding the standar atomic masses.
Answer:
Mass = 0.697 g
Explanation:
Given data:
Volume of hydrogen = 1.36 L
Mass of ammonia produced = ?
Temperature = standard = 273.15 K
Pressure = standard = 1 atm
Solution:
Chemical equation:
3H₂ + N₂ → 2NH₃
First of all we will calculate the number of moles of hydrogen:
PV = nRT
R = general gas constant = 0.0821 atm.L/mol.K
1atm ×1.36 L = n × 0.0821 atm.L/mol.K × 273.15 K
1.36 atm.L = n × 22.43 atm.L/mol
n = 1.36 atm.L / 22.43 atm.L/mol
n = 0.061 mol
Now we will compare the moles of hydrogen and ammonia:
H₂ : NH₃
3 : 2
0.061 : 2/3×0.061 = 0.041
Mass of ammonia:
Mass = number of moles × molar mass
Mass = 0.041 mol × 17 g/mol
Mass = 0.697 g
Answer:
since ionic bonds, bonds that are charged, have very high boiling points, then the water would have a higher boiling point because it has a slight charge whereas carbon dioxide is stable.
Explanation:
Mouthwash:
solvent - water
solute - alcohols
vinegar:
solvent - water
solute - acetic acid
bleach:
solvent - water
solute - sodium hypochlorite
hope this helps!!