1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NemiM [27]
3 years ago
11

The picture below shows the position of Earth and two stars.

Physics
2 answers:
alexgriva [62]3 years ago
8 0

The answer is:

18 years.

The explanation:

when Star 1 is 34 light years from Earth and Star 2 is 52 light years from Earth. that means the distance between star 1 and star 2 is 52-34 = 18 years so, If Star 2 explodes as a supernova so,  the explosion would take 18 years to be seen from a planet orbiting Star 1.


abruzzese [7]3 years ago
3 0
The picture below shows the position of Earth and two stars.Star 1 is 34 light years from Earth and Star 2 is 52 light years from Earth. If Star 2 explodes as a supernova, I believe that A. 18 light years would pass before the explosion is seen from a planet orbiting Star 1.
But I am not sure, sorry. :/
You might be interested in
Convert 3.45inches into km
Katyanochek1 [597]

Answer:

can someone please answer this i need this for a mastery test aswell

Explanation:

it would be very appreciated

8 0
2 years ago
Read 2 more answers
Two point charges, a +45nC charge X and a +12nC charge Y are separated by a distance of 0.5m.
Gnoma [55]

A) Calculate the resultant electric field strength at the midpoint between the charges.

Qx is the charge at X and Qy is the charge at Y.

E at midpoint = k×Qx/0.25² - k×Qy/0.25²

k = 9×10⁹Nm²C⁻², Qx = 45nC, Qy = 12nC

E = 4752N/C

Well done.

B) Calculate the distance from X at which the electric field strength is zero.

Let D be some point between X and Y for which the net E field is 0.

Let d be the distance from X to D.

Set up the following equation:

E at D = k×Qx/d² - k×Qy/(0.5-d)² = 0

Do some algebra to solve for d:

k×Qx/d² = k×Qy/(0.5-d)²

Qx/d² = Qy/(0.5-d)²

Qx(0.5-d)² = Qyd²

(0.5-d)√Qx = d√Qy

0.5√Qx-d√Qx = d√Qy

d(√Qx+√Qy) = 0.5√Qx

d = (0.5√Qx)/(√Qx+√Qy)

Plug in Qx = 45nC, Qy = 12nC

d ≈ 330mm

C) Calculate the magnitude of the electric field strength at the point P on the diagram below.

First determine the angles of the triangle. The sides of the triangle are 0.3m, 0.4m, and 0.5m, so this is a right triangle where the angle between the 0.3m and 0.4m sides is 90°

∠Y = tan⁻¹(0.4/0.3) = 53.13°

∠X = 90-∠Y = 36.87°

Determine the horizontal component of E at P:

Ex = E from Qx × cos(∠X) - E from Qy × cos(∠Y)

Ex = k×Qx/0.4²×cos(36.87°) - k×Qy/0.3²×cos(53.13°)

Ex = 1305N/C

Determine the vertical component of E at P:

Ey = E from Qx × sin(∠X) - E from Qy × sin(∠Y)

Ey = k×Qx/0.4²×sin(36.87°) - k×Qy/0.3²×sin(53.13°)

Ey = 2479N/C

Use the Pythagorean theorem to determine the magnitude of E at P:

E = √(Ex²+Ey²)

E ≈ 2802N/C

4 0
3 years ago
While working on her science fair project Venus connected a battery to a circuit that contained a light bulb. Venus decided to c
Dmitriy789 [7]
<h2>Answer:</h2>

<u>A) Increase the voltage by adding a bigger battery </u>

<h2>Explanation:</h2>

According to Ohm's law

V = IR

where V is voltage, I is current and R is the resistance. If we write the equation for resistance we would get

R= V / I

Here we can see that Voltage is directly proportional to Resistance so in order to keep the balance if we increase the resistance then we must increase the voltage to keep the current constant.


4 0
3 years ago
Read 2 more answers
When designing an experiment how do you choose a system to investigate
Nana76 [90]
You pick a system for which no control sample exists, so that no one can show that the alleged causal relationships you assert do not, in fact, lead to the phenomenon you claim to have observed.
4 0
3 years ago
A bomb of mass 4 kg, initially at rest, explodes breaking into two fragments of 1 kg and 3 kg. Which one of the following statem
Kazeer [188]

Answer: The 1 kg fragment will have three times the speed of the 3kg fragment.

Explanation:Here for the bomb, its chemical energy gets converted into the mechanical energy.

According to the law of conservation of momentum, the two bodies will have equal momentum and to satisfy this condition the lighter mass will have the higher velocity.

∵ momentum, p = mass × velocity

∴The 1 kg fragment will have three times the speed of the 3kg fragment.

6 0
3 years ago
Other questions:
  • As you (increase, decrease) in altitude, air pressure decreases.
    10·1 answer
  • Estimate the order of magnitude of the length, in
    12·1 answer
  • State the difference between sensible heat and latent heat
    6·1 answer
  • An electrician must decide between 3 heaters. The wire that she is using is rated 15A maximum, anything beyond that is a fire ha
    12·1 answer
  • Complete the sentence to describe what a wave is and what it does.
    13·2 answers
  • An elevator starts from rest with a constant. upward acceleration andmoves 1m in the first. 1.8 s. A passenger in the elevator i
    10·1 answer
  • A street light is mounted at the top of a 15-ft-tall pole. a man 6 ft tall walks away from the pole with a speed of 4 ft/s along
    6·1 answer
  • Two billiard balls with the same mass m move towards one another. Ball one travels in the positive x-direction with a speed of v
    10·1 answer
  • What do you understand by ?efficiency of a machine is 70%​
    15·1 answer
  • An electric current that continually reverses direction over time is known as an ??
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!