If the forces on an object are balanced (or if there are no forces acting on it), this is what happens:
a stationary object stays still
a moving object continues to move at the same speed and in the same direction
There are two types of mechanical waves:
longitudinal waves : Their displacement is in a direction perpendicular to the vibrations of the wave forming crests and troughs.
Transverse waves : They have the vibrations in the direction of the wave forming compressions and rarefactions.
Answer:
Temperature or thermal energy.
Explanation:
Conduction involves the transfer of electric charge or thermal energy due to the movement of particles. When the conduction relates to electric charge, it is known as electrical conduction while when it relates to thermal energy, it is known as heat conduction.
In the process of heat conduction, thermal energy is usually transferred from fast moving particles to slow moving particles during the collision of these particles. Also, thermal energy is typically transferred between objects that has different degrees of temperature and materials (particles) that are directly in contact with each other but differ in their ability to accept or give up electrons.
Hence, the temperature or thermal energy of matter depends on how much the particles are moving, which depends on the amount of kinetic energy the particles possess.
Answer:
The resultant velocity is 
Explanation:
Apply the law of conservation of momentum

Where
is the mass of the Luxury Liner = 40,000 ton
is the velocity of Luxury Liner = 20 knots due west
mass of freighter = 60,000
is the velocity of freighter = 10 knots due north
Apply the law of conservation of momentum toward the the west direction

So the equation would be

Substituting values

Where
the final velocity due west
Making
the subject


Apply the law of conservation of momentum toward the the north direction

So the equation would be

Where
the final velocity due north
Making
the subject


The resultant velocity is



It takes him
t = 16 miles / 156 mph = 0.1 hours