Answer:
<em>The second particle will move through the field with a radius greater that the radius of the first particle</em>
Explanation:
For a charged particle, the force on the particle is given as

also recall that work is force times the distance traveled
work = F x d
so, the work on the particle = F x d,
where the distance traveled by the particle in one revolution = 
Work on a particle = 2πrF = 
This work is proportional to the energy of the particle.
And the work is also proportional to the radius of travel of the particles.
Since the second particle has a bigger speed v, when compared to the speed of the first particle, then, the the second particle has more energy, and thus will move through the field with a radius greater that the radius of the first particle.
Answer:
For example, 1300 with a bar placed over the first 0 would have three significant figures (with the bar indicating that the number is precise to the nearest ten).
Explanation:
hope it helps :)
Answer:
A. when the mass has a displacement of zero
Explanation:
The velocity of a mass on a spring can be calculated by using the law of conservation of energy. In fact, the total energy of the mass-spring system is equal to the sum of the elastic potential energy (U) of the spring and the kinetic energy (K) of the mass:

where
k is the spring constant
x is the displacement of the mass with respect to the equilibrium position of the spring
m is the mass
v is the velocity of the mass
Since the total energy E must remain constant, we can notice the following:
- When the displacement is zero (x=0), the velocity must be maximum, because U=0 so K is maximum
- When the displacement is maximum, the velocity must be minimum (zero), because U is maximum and K=0
Based on these observations, we can conclude that the velocity of the mass is at its maximum value when the displacement is zero, so the correct option is A.
Answer:
The mass of the products and reactants are the same on both sides of the equation.
The number of atoms of products and reactants are equal and hence it proves the law of conservation of mass.
.
Answer:
wedges are a type of inclined plane.
Explanation:
i just answered :) :) :)